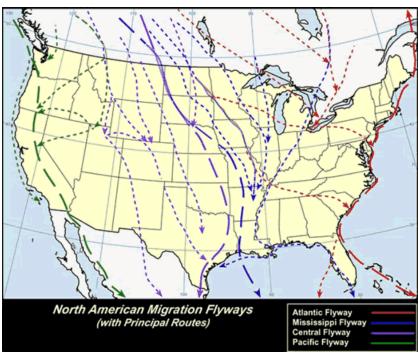
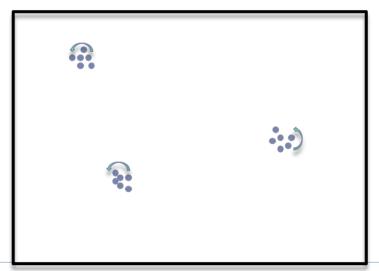
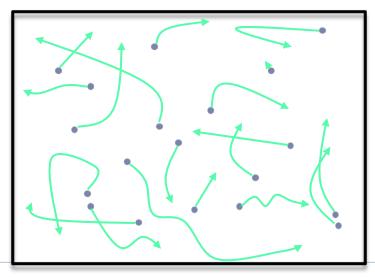
Information Content in Motion


Sorelle Friedler, Haverford College

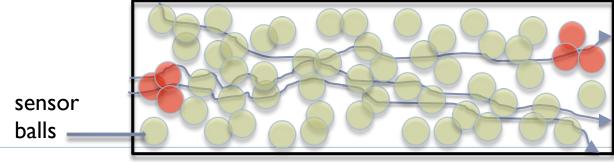
Questions

- What are good definitions for the information content of motion?
- How can we identify patterns in motion?
- How can we create algorithms and efficiency analyses that are dependent on the information content of motion?

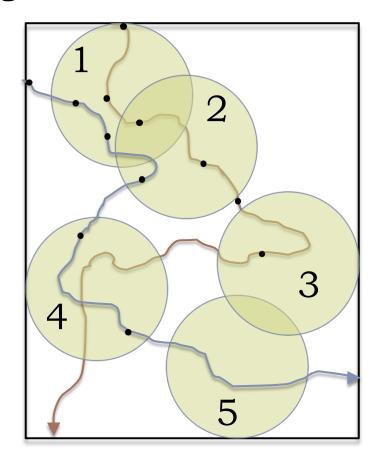

Motivation



Motivation


- Develop a framework for kinetic data from sensors
 - No advance object motion knowledge
 - No restrictions on object motion
 - Reasonable assumptions of what a sensor can know
 - Efficiency analysis that is motion sensitive

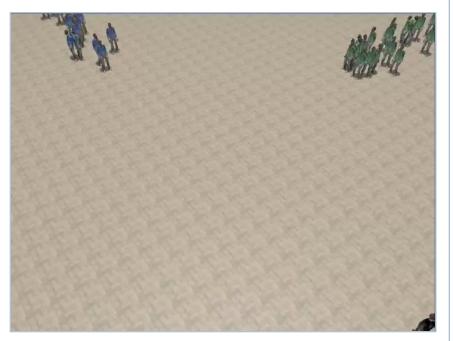
Our Framework


- Detection region around each sensor (stationary sensors)
- Point motion unrestricted
- No advance knowledge about motion
- Each sensor reports the count of points within its region at each synchronized time step
- <u>k-local</u>: Sensor outputs statistically only dependent on *k* nearest neighbors

Sorelle A. Friedler and David M. Mount. Compressing kinetic data from sensor networks. AlgoSensors 2009.

Data Collection

Data based on underlying geometric motion



Sensor data streams

time

X_1	\mathbf{X}_2	\mathbf{X}_3	X_4	\mathbf{X}_{5}
1	0	0	0	0
2	0	0	0	0
2	1	0	0	0
0	2	0	0	0
0	0	0	1	0
0	0	1	1	0

Spatio-temporal k-Center Problem

simulation by the UNC collision avoidance team

$$X = \{X_1, ..., X_S\}$$

$$X_i = X_{i1},...,X_{ij},...,X_{iT}$$

- Assign counts to k clusters C_{ij1} , ..., C_{ijk} such that for all sensors and times i,j
 - $\sum_{\ell} C_{ij\ell} = X_{ij}$
- Minimize the maximum $H_{\tau}(\mathbf{X})$ over all $C_{\ell} = \{C_{ij\ell}\}_{j}$

Questions

- What are good definitions for the information content of motion?
- How can we identify patterns in motion?
- How can we create algorithms and efficiency analyses that are dependent on the information content of motion?