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Motivation #1 
  Kinetic data: data 

generated by moving 
objects 

  Sensors collect data 
  Large amounts of data 
  Want to analyze it later 
  Don’t know what 

questions we’ll want to 
ask in advance 

  Lossless compression 



Entropy 

Consider the string generated by a random process… 

  Entropy:  The information content of a string or a 
measurement of the predictability of the random process 

  -Σx pr(x) log pr(x) 
  Example:  A weighted coin that’s always heads vs. a normal coin: 

  -(1 log 1) = 0  vs.  -(½ log ½ + ½ log ½) = 1 
  Joint entropy:  The entropy based on joint probabilities of 

a set of events 
  Normalized entropy: for strings of length n, 1/n entropy 

  bits to encode each character    



Data Compression 
  Encoded strings are compressed to a shorter length than 

the original 

Consider the string generated by a random process… 

  Optimal compression algorithms over a string achieve a 
per bit encoding rate equal to the normalized entropy 

  Optimal compression algorithms over a set of strings 
achieve a per bit encoding rate equal to the normalized 
joint entropy 



Data Compression Options 

Lossless 

  Data is completely 
retrievable 

  Compression bounds are 
theoretically provable 

  Sliding-window Lempel-
Ziv algorithm 1977 

  Some data may be lost 

  Can compress the data to 
fit in the space you have  

Lossy 



Motivation #2 
  Develop a framework for kinetic data from sensors  

  No advance object motion knowledge 
  No restrictions on object motion 
  Reasonable assumptions of what a sensor can know 
  Efficiency analysis that is motion sensitive 



Existing Frameworks for Kinetic Data 

  Kinetic Data Structures [BaschGuibasHershberger97] 
  Each point has a flight plan (algebraic expression) 
  Flight plans may change (with notice) 
  Computational structure (e.g. Delauney triangulation, lower 

envelope, etc.) is maintained online 
  Certificates guarantee boolean properties 
  Certificate failure times are computed and put in a priority 

queue.  Rules are given to update the property on failure. 
  Framework for sensor placement [NikoleteasSpirakis08] 

  Possible object trajectories are 3D curves over space and time 

  Minimal sensor assumptions [GandhiKumarSuri08] 
  Sensors can count objects within their detection region 



Our Framework 
  Detection region around each sensor (stationary sensors) 
  Point motion unrestricted 
  No advance knowledge about motion 
  Each sensor reports the count of points within its region 

at each synchronized time step 
  k-local: Sensor outputs statistically only dependent on k 

nearest neighbors 

sensor 
balls 



Data Collection 
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Sensor data streams 
Data based on underlying 
geometric motion 



What is Optimal? 
  Joint entropy chain rule (X = {X1, X2, … , XS}):  

  H(X) = H(X1)+H(X2|X1)+…+H(XS|X1,…,XS-1)  

  k-local entropy (Hk): normalized joint entropy of a set of 
streams that are only dependent on up to k streams from 
their k nearest neighbors 

  Optimal compression of sensor streams is H(X) = Hk(X) 



Data Compression Algorithm 
  The optimal bound is the joint entropy of the set of 

streams 

  Compressing each separately doesn’t reach this bound 

  Compressing all together reaches bound, but the window 
size necessary to achieve the needed repetition is too 
large to be practical 

  Since H(X)=Hk(X) we want groups of roughly k streams 



Data Compression Algorithm: 
Partitioning Lemma 

  k-clusterable:  A point set that can be clustered into 
subsets of size at most k+1 so that if p and q are among 
each other’s k nearest neighbors then they are in the 
same cluster. 

 2-clusterable example 



Data Compression Algorithm: 
Partitioning Lemma 

  k-clusterable:  A point set that can be clustered into 
subsets of size at most k+1 so that if p and q are among 
each other’s k nearest neighbors then they are in the 
same cluster. 

 not 2-clusterable example 

 0         1         2         3         4         5         6          7 



Data Compression Algorithm: 
Partitioning Lemma 

  Lemma:  There exists an integral constant c such that for 
all k>0 any point set can be partitioned into c partitions 
that are each k-clusterable.    



Partitioning Algorithm 
for all points find 
 rk(p) = distance from p to its kth nearest neighbor 
 NNk(p) = k nearest neighbors of p  
while P is nonempty 
 unmark all points in P 
 create a new empty partition Pi 

 while there are unmarked points 
     r = minimum rk(p) for unmarked p 
     q = point with rk(q) = r 
       add q and its NNk(q) to Pi 

  and remove from P 
     mark all points within 3r of q 
return {P1, P2, …, Pc}  



Partitioning Lemma Proof Sketch 
  By nature of marking and order of clustering, all partitions 

are k-clusterable 
  No points in the partition are within 2r of a radius r cluster 
  Increasing rk(p) choices ensure non-mutual NNk(p) relations 

are separated into different clusters 

  There are c partitions 
  In each round every point is either marked or removed from P 
  A point p is marked only by points within 12 min({rk(p)}) 
  Points that mark p are separated by distance min({rk(p)})  
  Packing argument bounds the number of times a point can be 

marked to c = O(1 + 12O(1)) = O(1)  



Data Compression Algorithm 
  Partition and cluster the sensors, then compress 

    for each partition Pi 

       for each cluster in Pi 
          combine the cluster’s streams into 
         one with longer characters 
    return the union of the compressed streams 

  Proof Sketch: 
  The joint entropy of the streams is the optimal length 
  Sensor outputs are k-local, so each compressed partition is the 

optimal length 
  There are c partitions, so the total length is c times optimal  

1120… 
1003… 

(11)(10)(20)(03)… 



Summary of Results 
  Framework for kinetic sensor data 

  No assumptions about object motion or advance knowledge 
  Motion sensitive analysis 
  Relies on minimal sensor abilities 

  Lossless compression algorithm that compresses the data 
to c H(X), which is O(optimal) 
  Assumes the sensor outputs are only dependent on their k 

nearest neighbors 
  Assumes the sensor outputs can be modeled by an underlying 

random process 



Recent and Future Work 
  Extend analysis of compression algorithm to consider 

empirical entropy (no underlying random process) 
  Retrieval without decompressing the data 

  Range searching 
  E.g. given a time period and spatial range, what is the 

aggregated count? 

  Statistical analysis without decompressing the data 
  Lossy compression 
  Experimental evaluation 
  Application in non-sensor contexts 

✓

✓



Thank you!

Questions?



