Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data

<u>Sorelle A. Friedler</u> and David M. Mount University of Maryland, College Park

Motivation

- Kinetic data: data generated by moving objects
- Sensors collect data
- Large amounts of data
- Collect and perform lossless compression
- Goal: retrieve without decompressing
- Next: analyze

Motivation

Computer Science

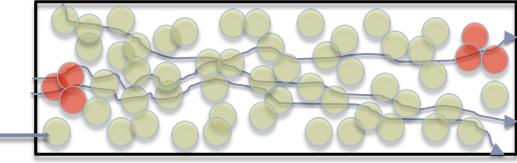
- Graphics: Image and video segmentation, animation
- Databases: Maintenance over time
- Sensor Networks: Data analysis

Physics

Simulations

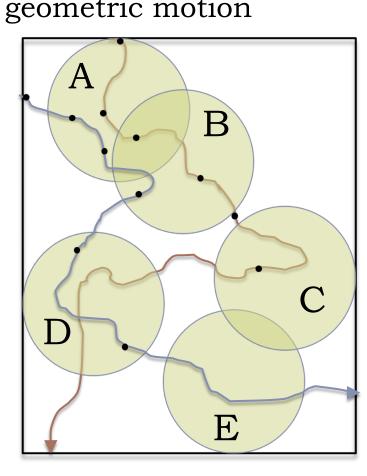
Biology

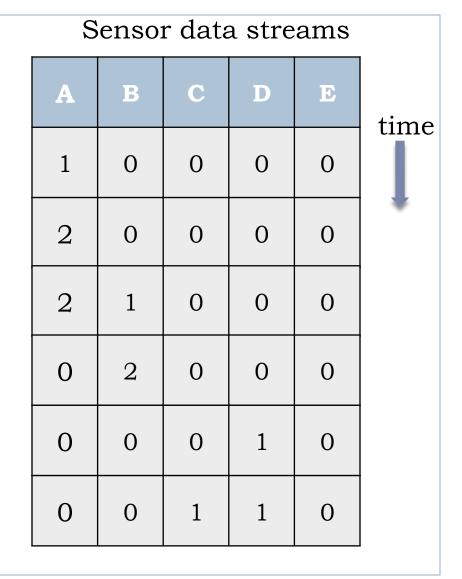
- Mathematical ecology: Migratory paths
- HIV strain analysis


Engineering

Traffic patterns and identification

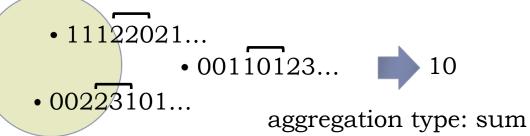
Our Framework


[FriedlerMount09]

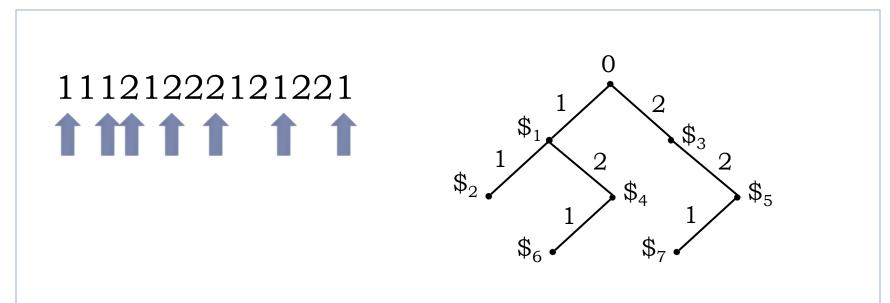

- Detection region around each sensor (stationary sensors)
- Point motion unrestricted
- No advance knowledge about motion
- Each sensor reports the count of points within its region at each synchronized time step
- <u>k-local</u>: Sensor outputs statistically only dependent on k nearest neighbors

sensor balls

Data Collection

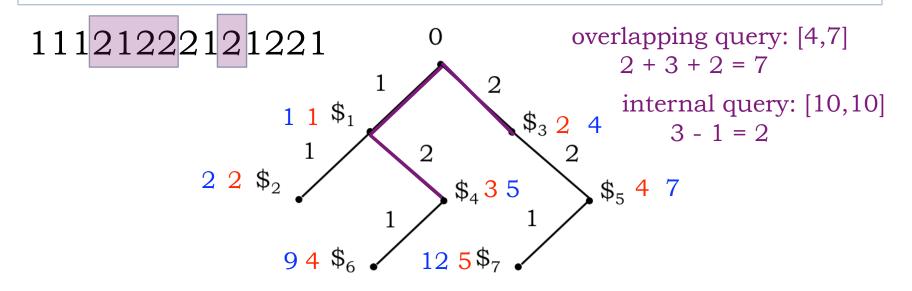

Data based on underlying geometric motion

Range Searching: Our Problem

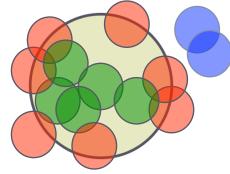

Compress and preprocess the data so as to perform...

• <u>Temporal range query</u>: Given a time interval, return an aggregation of the counts over that time interval. t: 1234567891011 aggregation type: sum X: 0,0,4,4,5,4,3,3,1, 1, 0

Spatio-temporal range query: Given a time interval and spherical spatial region, return an aggregation of the counts over that time interval and within that region.

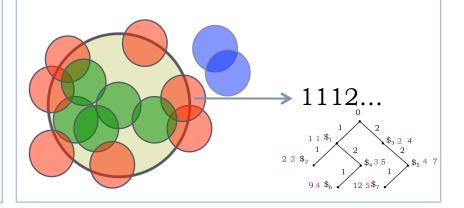

Lempel-Ziv Dictionary Compression [LZ78]

Create a trie while scanning through a string. The compressed string contains pointers to this dictionary.


Temporal Range Searching

- Create trie with accompanying pointers
- Annotate trie with aggregate values and word start times
- Given a temporal range [t₀, t₁] find the anchor points \$⁰ and \$¹ such that \$⁰≤t₀ and \$¹≥t₁
- Use stored prefixes, words, and subtraction of prefixes to find aggregates

Spatio-temporal Range Searching


Set of Clumps	Clumps and Ranges	
A finite set of balls with the following packing property: Given any ball b with radius r, the number of clumps of radius r' that intersect b is at most $O(1+(r/r')^{\gamma})$ where γ is a constant possibly dependent on dimension.	 Given a range Q, a clump may either be contained in Q (green) be <u>stabbed</u> by Q (red) lie outside of Q (blue) 	

Spatio-temporal Range Searching

- The sensors are clustered and compressed. Each cluster has an associated ball. These balls form a set of clumps.
- <u>Range Searching Among</u>
 <u>Clumps</u>: Given any query range Q and using a partition-tree, we can report
 - a subset of clump subsets that form a disjoint cover of the clumps within Q
 - the subset of clumps that Q stabs

Main Theorem: By adding an auxiliary data structure to answer temporal range queries to each node in the range searching among clumps solution we can answer spatio-temporal range queries.

Results

Bounds for Range Searching		
	Temporal	Spatio-temporal
Preprocessing time	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X}))$
Query time	$O(\log T)$	$O(((1/\varepsilon^{d-1}) + \log S) \log T)$
Space	$O(\operatorname{Enc}(X))$	$O(\operatorname{Enc}(\mathbf{X})\log S)$

- X: The set of sensor system observations
- Enc(X): The encoded size (in bits) of the sensor system
- > T: The total time over which data was collected
- S: The total number of sensors
- d: The dimension of the sensor space

First range searching bounds over compressed data

Other Results and Future Work

- Temporal range searching in the semigroup setting
- Extend analysis of compression algorithm to consider empirical entropy (no underlying random process)
- \blacktriangleright Extend analysis to allow δ -independence instead of strict pure statistical dependence
- Statistical analysis without decompressing the data
- Lossy compression
- Experimental evaluation
- Application in non-sensor contexts

Thank you! Questions?