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Machine-learning-assisted materials discovery

using failed experiments
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Inorganic-organic hybrid materials'~® such as organically
templated metal oxides!, metal-organic frameworks (MOFs)?
and organohalide perovskites* have been studied for decades, and
hydrothermal and (non-aqueous) solvothermal syntheses have
produced thousands of new materials that collectively contain nearly
all the metals in the periodic table’~. Nevertheless, the formation
of these compounds is not fully understood, and development
of new compounds relies primarily on exploratory syntheses.
Simulation- and data-driven approaches (promoted by efforts such
as the Materials Genome Initiative'’) provide an alternative to
experimental trial-and-error. Three major strategies are: simulation-
based predictions of physical properties (for example, charge
mobility!!, photovoltaic properties'?, gas adsorption capacity'’ or
lithium-ion intercalation'®) to identify promising target candidates
for synthetic efforts'>'>; determination of the structure-property
relationship from large bodies of experimental data'®!?, enabled
by integration with high-throughput synthesis and measurement
tools'®; and clustering on the basis of similar crystallographic
structure (for example, zeolite structure classification'*?° or gas
adsorption properties’!). Here we demonstrate an alternative
approach that uses machine-learning algorithms trained on reaction
data to predict reaction outcomes for the crystallization of templated
vanadium selenites. We used information on ‘dark’ reactions—
failed or unsuccessful hydrothermal syntheses—collected from
archived laboratory notebooks from our laboratory, and added
physicochemical property descriptions to the raw notebook
information using cheminformatics techniques. We used the
resulting data to train a machine-learning model to predict reaction
success. When carrying out hydrothermal synthesis experiments
using previously untested, commercially available organic building
blocks, our machine-learning model outperformed traditional
human strategies, and successfully predicted conditions for new
organically templated inorganic product formation with a success
rate of 89 per cent. Inverting the machine-learning model reveals
new hypotheses regarding the conditions for successful product
formation.

First-principles crystal-structure prediction—even for simple
crystallization from a solvent—is fundamentally difficult, owing to
the need to consider a combinatorially enormous set of component
arrangements”>?* using high-level quantum chemistry methods®*.
Predicting crystal structures following a chemical reaction—as in the
case of hydrothermal and solvothermal synthesis—is even more chal-
lenging, because it requires an accurate potential-energy surface for
the entire reaction. Instead we pose the potentially tractable question
of whether a given set of reaction conditions and reagents will yield
any crystal at all. A machine-learning approach to the related prob-
lem of whether a particular organic molecule will crystallize has been
described previously?>. Chemists typically posit an ‘intuition’ about
patterns of reagent properties and composition ratios that govern
material synthesis. If these patterns exist, then they can be discovered

using data-mining techniques, given a database of successful and failed
reactions. However, the published literature contains only a limited
subset of successful reactions, typically a single set of conditions
for each compound. The vast majority of unreported ‘dark’ (failed)
reactions are archived in laboratory notebooks that are generally inac-
cessible. These reactions contain the valuable information needed to
determine the boundaries between success and failure.

To use these data to guide future materials syntheses, we developed
a web-accessible public database (http://darkreactions.haverford.edu)
to facilitate both initial data entry from existing laboratory notebooks
and ongoing experimental data collection. The database schema is suf-
ficiently general to accommodate reaction descriptions beyond our
particular chemical interests (for example, allowing for arbitrary num-
bers of inorganic and organic species, or non-aqueous solvents). We
intentionally captured experimental data that might be useful for later
studies (for example, product purity labels) to avoid having to re-enter
experimental data, even though they were not used in the present
study. The data-capture process and reliability testing are described in
Methods. After excluding reactions with incomplete laboratory note-
book entries, 3,955 unique, complete reactions remained for use in
training and testing the machine-learning model.

Reactant names can be used to create property descriptors for our
machine-learning model. For organic and oxalate-like reactants, com-
mercially available cheminformatics software was used to compute
physicochemical properties of the molecules (for example, molecular
weight, number of hydrogen-bond donors/acceptors as a function of
pH and polar surface area). For inorganic reactants, tabulated values of
atomic properties (for example, ionization potential, electron affinity,
electronegativity, hardness and atomic radius) and position on the peri-
odic table were used. Additionally, experimental reaction conditions (for
example, temperature, reaction duration and pH) and mole ratios of the
different reactants were used (see Methods). A support vector machine
(SVM) model was built using this expanded table of reactant properties
(see Methods). The single SVM model used to predict experimental
results had an accuracy of 78% in describing all of the reaction types in
its test-set data, and 79% considering only vanadium-selenite reactions.

Solid-state synthesis projects can be divided into exploration and
exploitation stages. Successful exploration reactions reveal new ‘islands
of stability’—sets of reaction conditions that result in product forma-
tion. Success rates during this stage tend to be low, because the general
ranges of acceptable parameters needed for successful syntheses are
unknown. The boundaries of the island can be mapped by changing
the organic reactants. These exploitation reactions expand the range of
functional material properties and reveal new insights about organic-
inorganic interactions. Success rates during this stage can be high,
because the structures and reactivities of the organic molecules can be
quite similar, and so changing the organic reactants has a more subtle
effect on the chemistry.

A successful model should both increase the rate of synthesis
and characterization of new materials and give chemical insight.
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Figure 1 | Schematic representation of the feedback mechanism in

the dark reactions project. Machine-learning models generated from
historical reaction data are used to recommend new reactions to perform,
and to generate human-interpretable hypotheses about crystal formation.
SVM, support vector machine.

To demonstrate the performance of our model relative to typical
strategies of human chemists, we focused on exploitation reactions in
templated vanadium selenites, in which a new organic building unit
is introduced into a reaction. These reactions allow us to: (i) compare
against the experimental decisions of experienced chemists;
(ii) obtain higher quality statistical data because exploitation reactions
are generally more successful; and (iii) increase understanding about
the unusual degree of diversity in connectivity and dimensionality
that is observed in these compounds. Though, beyond the scope of
this Letter, our model could also be applied to exploration reactions,
by computationally sampling possible reaction conditions involving
all possible combinations of reactants, predicting successes, and then
sorting the reactions by chemical interest. We used a database of com-
mercially available organic compounds to identify 34 new diamines,
sampled by structural similarity to the organic reactants already in our
database (see Methods). Organically templated metal oxides using
these diamines are essentially unknown, as indicated by their near
absence from the Cambridge Structural Database?® (see Methods).
These amines were then used to perform human- or model-controlled
hydrothermal synthesis reactions (see Methods). A schematic of this
approach is shown in Fig. 1.

Reactions recommended by the model had an 89% success rate, as
defined by the synthesis of the target compound type in either a poly-
crystalline or single-crystal form, and success rate was independent
of the structural similarity of the amine (see Fig. 2). This exceeds the
human intuition success rate of 78%. The difference is statistically
sound. Fisher’s exact test indicates better-than-chance results for model
predictions with P < 0.01, and a two-sample proportion test indicates
an 8% advantage of the model over human intuition with P < 0.05. The
89% success rate of the model in the experimental test is greater than
the test-set accuracy measured during model construction, because the
train/test split on the historical data essentially tests only exploration
reactions (for which the model uncertainty is higher), whereas these
experiments test exploitation reactions (for which the model uncer-
tainty is lower).

SVMs are opaque to simple examination. To gain insight we made a
‘model of the model’ by re-interpreting the original SVM as a decision
tree of human-interpretable if-then criteria (see Methods). An abbre-
viated flow-chart representation is shown in Fig. 3, and a full version
of the vanadium-selenite branch of the tree is shown in Supplementary
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Figure 2 | Comparison of experimental outcomes relating to the
formation of templated vanadium-selenite crystals, as a function of
amine similarity. Darker coloured bars indicate model predictions; lighter
colours bars indicate traditional human strategies. Reactions that yielded
polycrystalline and large single-crystalline products are shown in blues
and greens, respectively. The vertical axis shows the probably that the
reaction had the indicated outcome. The model more successfully predicts
conditions for crystal formation than do human strategies, regardless of
structural similarity of the templating amines to known examples in the
database.

Information. From this flow chart, one can generate chemical hypoth-
eses to guide future experiments. This approach can be applied to any
chemical system for which any model exists. Here it yielded three
hypotheses about the formation of templated vanadium selenites,
categorized by the molecular polarizability of the amine. Representative
structures for each hypothesis are shown in Fig. 4. (The model sepa-
rates inorganic building units by mean Pauling electronegativity; as a
consequence, vanadium selenites and molybdates appear in the same
subtree. In the discussion below, we consider only the vanadium-
selenite reactions contained in the subtree.)

Amines with moderate polarizability (10.29-19.51 A3), shown in blue
in Fig. 3, require inclusion of a sulfur-containing reactant, specifically
here V(IV)OSOs. (The decision tree incidentally selects these amines
by polarizability in the right branch and organic refractivity, that is,
molar polarizability, in the left branch.) All but one of the organically
templated vanadium selenites in the literature include V4t jons, which
must be either introduced as a reagent or generated in situ through
the concurrent oxidation of the amine and reduction of V>". These
geometrically compact amines seem unable to generate the necessary
V*4 concentrations from V> precursors over the timescale of the reac-
tion. This triggers the formation of polycrystalline reaction products
that do not contain the organic amines. Using V(IV)OSO4 circumvents
this inability to generate V**.

Amines with high polarizability (17.64-29.85 A*), shown in red in
Fig. 3, are not limited by V** generation, but do require oxalates for
success. We hypothesize that oxalates alter the charge density on the
inorganic secondary building unit, allowing these long, linear, highly
charged tri- and tetramines to achieve charge density matching®.

Amines with low polarizability (<9.32 A%), shown in green in Fig. 3,
(for example, ethylenediamine, 1,3-diaminopropane, imidazole and
N-methylethylenediamine) have higher pK, values than the other
amines in our database and do not need pH < 3 to be in the correct
protonation state. These amines generate sufficient V4T from V" pre-
cursors, but slowly, requiring longer reaction times (>26h). Use of
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Figure 3 | SVM-derived decision tree. Ovals represent decision nodes, from missing attribute values higher in the tree. Bins containing the
rectangles represent reaction-outcome bins and triangles represent excised =~ majority of successful reactions are divided into three distinct groups
subtrees. The numbers on the arrows correspond to decision attribute (indicated by green, blue and red shading). Each coloured subtree defines a
test values. Each reaction-outcome bin (rectangle) corresponds to a specific set of reaction parameters that facilitates single-crystal formation.
specific reaction-outcome value (3’ or ‘4; as indicated; see Methods); Inspection of these conditions leads to the corresponding chemical
the number in parentheses is the number of reactions correctly assigned hypotheses, corresponding to low-, medium- and high-polarizability
to that bin (any incorrectly classified reactions are given after a slash). amines, respectively. An expanded version showing all excised subtrees is
Fractional values indicate reactions with an indeterminate result arising available in Supplementary Information.

Figure 4 | Graphical representation of the three
hypotheses generated from the model, and
representative structures for each hypothesis.
Experimental conditions required for single-
crystal formation largely depend on the amine
properties. Small, low-polarizability amines
require the absence of competing Na* cations

No Na, longer V4 reagents Oxalate components 'fand longer re{ac.tion times, to av.oid precipitating
reaction times required required inorganic building units. Spherical, low-
projection-size amines require V*"-containing
reagents such as VOSOy, because they are

unable to generate V** directly from typical V>
precursors. Long tri- and tetramines require
oxalate reactants, to alter the charge density of
inorganic secondary building units. These three
hypotheses correspond to the green, blue and red
subtrees in Fig. 3, respectively.
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NaVOj3 generally results in formation of inorganic-only polycrystal-
line products. Excluding sodium from the reaction mixture, by using
NH4VOs3, eliminates this thermodynamic sink, enabling formation of
the target phase.

These hypotheses provide specific recommendations for compound
formation by: (i) understanding the generation of appropriate pri-
mary building units (V*T); (ii) enabling the construction of secondary
building units that achieve charge density matching with the cationic
components; and (iii) avoiding undesirable building units (Na™) that
result in non-templated phases. These general rules reveal previously
unknown insights into our chemistry. The hypotheses derived from
this analysis are manifested in three separate compounds, as shown
in Flg 4, [C3H12N2] [V305(S€O3)3]'H20 and [C6H22N4] [VO(C204)
(Se03)],2H,0 are new compounds (crystallographic details available
in Supplementary Information); [CsH4N,][VO(SeOs),] was reported
recently?’. The polarizabilities of the amines in these compounds range
from low (1,3-diaminopropane) to moderate (2-methylpiperazine) and
to high (triethylenetetramine).

Our machine-learning approach allows us to exploit chemical infor-
mation contained in historical reactions and to elucidate the factors
governing reaction outcome. The prediction accuracy of the model for
previously untested organic amines surpassed the outcomes achieved
using the chemical intuition built over many years. In addition, our
approach reveals chemical principles governing reaction outcome in
the form of testable hypotheses. The ability to make new compounds
more successfully and to derive useful chemical information represents
a transformative step forwards in exploratory reactions.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Data capture and reliability. The average rate of data entry from our laboratory
notebooks was approximately 50 reactions per hour. Three types of data were
entered from the laboratory notebooks. First, compositional information was
entered in the form of reactant identities and quantities. Reactants were categorized
as being building units for the organic or inorganic structures, or acting as solvent
(water). Second, reaction conditions were described, including initial solution pH
and heating profile data. Third, reaction-outcome data included both qualitative
descriptions of the products and product purity. These descriptions were coded
during data entry. Crystal size was coded with the labels 1 for no solid product,
2 for an amorphous solid, 3 for a polycrystalline sample or 4 for single crystals
with average crystallite dimensions exceeding approximately 0.01 mm. (This size
corresponds to the general requirements for standard single-crystal X-ray diffrac-
tion data collection.) Product purity was coded with the labels 1 for a multiphase
product or 2 for a single-phase product.

Reliability testing was performed on 100 randomly selected reactions from the
database. Each field in each reaction was checked against the laboratory notebook
from which this entry was generated. The overall error rate for all fields was 1.89%,
which corresponds to 34 errors from a set of 1,800. Each reaction must have at
least one inorganic component, one organic component, one solvent, as well as
all reaction conditions and outcomes fields listed above. If any of these fields is
missing, the reaction is entered into the database for completeness, but is not used
for the training or testing of the machine-learning model described below. These
filters resulted in a dataset of 3,955 unique, complete reactions.

Reactant descriptors. The ChemAxon Calculator Plugins® were used to compute
the physicochemical properties of the organic and oxalate-like reactants (for example,
molecular weight, number of hydrogen-bond donors/acceptors as a function of pH
and polar surface area). For both the organic and oxalate-like reactants, 19 properties
were used directly, and others were used to calculate 6 variables describing the
mole ratios of the different reactants that were present. For inorganic reactants,
12 atomic properties (for example, ionization potential, electron affinity, electron-
egativity, hardness and atomic radius), 22 logical values describing the presence or
absence of particular metal types, 28 logical values describing the position on the
periodic table, and 8 logical values describing the metal valence were used for each
element type contained in the reactants. Five variables are experimental reaction
conditions (for example, temperature, reaction duration and pH). The descriptor
variables are represented in a permutation-invariant fashion (maximum, minimum,
arithmetic- and geometric- means) for each reactant type, so that neither the order
in which the data are entered nor the number of each component matters, which
results in a total of 273 descriptors per reaction. See Supplementary Information
for a complete table of computed physicochemical properties.

SVM creation and validation. A broad set of models was evaluated, including
decision trees, random forests, logistic regression, k-nearest neighbours and
SVMs?. As shown in Supplementary Table 5, a SVM resulted in the highest
accuracy, 74%, as measured using a calculated average of 15 training/test splits.
Specifically, a SVM>® model with a universal Pearson VII function-based kernel®!
was trained on 3,955 labelled reactions previously performed by the laboratory.
The SVM was implemented in WEKA 3.7°%33; this implementation included a
built-in data-normalization step. The model was tested against the known data
for its accuracy using a standard 1/3-test and 2/3-training data split. Because the
goal is to predict the outcome of reactions with new combinations of reactants,
careful partitioning of the test set was required. Holding out test data uniformly
at random would potentially put the same combinations of inorganic and organic
reactants (reactions differing only by stoichiometries and other conditions) into
both the test and training sets, and thus artificially inflate the accuracy rate. Instead,
all of the reactions containing a particular set of inorganic and organic reactants
were placed into either the test or training set. Under these conditions, the SVM
model was measured according to its two-class accuracy, where outcomes of ‘3’
or ‘4’ were considered successes and ‘1’ and 2’ were grouped together as failed
reactions. The single SVM model used to predict experimental results had an
accuracy of 78% in describing all of the reaction types in its test-set data, and 79%
considering only vanadium-selenite reactions. The average over 15 such splits was
74%. A learning curve was constructed to test the SVM; details are available in
Supplementary Information.

High-dimensional feature spaces are not problematic for SVMs, because they
are especially robust to correlated features and are frequently used for problems
with many more dimensions than our feature set (for example, in textual learning
with 10,000 features)**. Feature selection was performed on the model to identify
the properties with the most influence on classification success (see Supplementary
Information). The selected features were properties of the organic amines (van
der Waals surface area, solvent-accessible surface area of positively charged
atoms and the number of hydrogen-bond donors) and the inorganic components
(mean of the Pauling electronegativites of the metals, their mole-weighted
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hardness and mean mole-weighted atomic radii). Using only these six features
lowers the model accuracy to 70.7%; therefore, the entire set of features was used
for the experimental tests. However, the six selected features listed above appear
in the decision-tree description of the model.
Selection of new diamines. The eMolecules database (http://academics.emol-
ecules.com/) was used to identify new diamines comprised of only C, H and
N atoms, excluding nitriles, hydrazines and isotopically labelled compounds,
resulting in 1,680 previously untested, commercially available diamines. For each
diamine, a structural fingerprint based on the topological bond paths® of the mol-
ecule was calculated, and the maximum structural similarity to any of the existing
organic compounds in the database was computed using the Tanimoto similarity*’;
the fingerprinting and similarity calculations were performed using the default
parameters of the RDKit (http://www.rdkit.org). The particular similarity measure
used is not crucial—a comparison of 12 standard fingerprinting methods found
that they are all correlated with one another. The list was ranked by similarity
and by cost, using the Sigma Aldrich (338 diamines) and Alfa Aesar (62 additional
diamines) catalogue prices. After excluding the highest-cost diamines, we sampled
34 diamines across the range of similarities to existing compounds. The same 34
amines were used for both the model and human reactions discussed in the text.
On average, 2 structures have been reported for each of the 34 diamines in the
Cambridge Structural Database (CSD)?, with 19 not existing in any templated
metal-oxide structure in the CSD. By contrast, an average of 151 unique struc-
tures exist for the most frequently used amines (piperazine, ethylenediamine,
4,4'-dipyridyl and DABCO).
Hydrothermal synthesis. To avoid introducing biases, all reaction types (which
differ in specific sets of reagents and reaction conditions) were randomly assigned
to be human- or model-controlled, with the stipulation that each amine appear with
approximately the same frequency. Amine quantities were determined by either
the model or an approach that simply captures human intuitions about exploita-
tion reactions. The recommendations of the model were generated by sampling
a range of organic mole amounts, then sorting the results by predicted outcome
and confidence. For consistency, human reactions used a rule-based approach
that is widely used by the exploratory hydrothermal synthesis community®’,
namely, scaling the masses of the organic amines by their respective formula
weights, while all other reaction parameters remain unchanged. For brevity, we
call this rule-based approach to capture human chemical knowledge “intuition”
All reactions were conducted under mild hydrothermal conditions, in 23-ml
poly(fluoroethylene-propylene)-lined pressure vessels. The pH values of the initial
reaction mixtures were adjusted to the appropriate values using either 4 M HCl or
4M NaOH. Reaction mixtures were heated to 90-110°C for 12-72h. Pressure
vessels were opened in air after reaction and products were recovered through
filtration. Objective metrics (measured crystallite size and powder X-ray diffraction)
were used to score reaction outcomes.
Statistical analysis. Statistical analyses were performed with standard packages
available in R 3.2.1%%. No statistical methods were used to predetermine sample size.
Decision-tree construction. All data were relabelled with the predicted outcomes
of the SVM model and a C4.5 decision tree (implemented in WEKA 3.7)%* was
used to model those predicted outcomes™.
Code availability. All code for this project is available at https://github.com/
darkreactions. The code is licensed under the GPL version 3. The precise terms of
said license are available with the code.
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