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Abstract
Applying artificial intelligence to materials research requires abundant curated experimental data and the ability for algorithms to request new
experiments. ESCALATE (Experiment Specification, Capture and Laboratory Automation Technology)—an ontological framework and open-
source software package—solves this problem by providing an abstraction layer for human- and machine-readable experiment specification,
comprehensive and extensible (meta-) data capture, and structured data reporting. ESCALATE simplifies the initial data collection process, and
its reporting and experiment generation mechanisms simplify machine learning integration. An initial ESCALATE implementation for metal
halide perovskite crystallization was used to perform 55 rounds of algorithmically-controlled experiment plans, capturing 4336 individual
experiments.

Introduction
Chemistry and materials science are entering a new data-driven
age,[1–3] in which planning algorithms select experiments to be
conducted by humans or performed autonomously using labo-
ratory robotics.[4–6] Laboratory automation has been an ongo-
ing endeavor for nearly a quarter century with seminal
demonstrations of high-throughput materials research per-
formed by Xiang et al. in 1995.[7] Subsequent research, pre-
dominantly in combinatorial chemistry, focused on the
development of high-throughput techniques targeting new
material syntheses[8] and methods of characterization[9] that
have been the topic of several comprehensive reviews.[10–17]

Recent advances in machine learning and artificial intelligence
allow for extracting further physical insights latent within these
results.[18,19] Important themes include comprehensive capture
and analysis of “successful” and “failed” experiments,[20–23]

adaptively modifying the experiment plans as data are col-
lected,[4,24–29] machine-learned characterization of experimen-
tal outcomes,[30] ensuring sufficient sampling of relevant
experimental variables by avoiding human biases,[24,31] and
integration with chemical informatics features[32] and physical
simulation outputs as machine learning model inputs.[33–35]

The types of chemistry, experimental processes, level of
automation, and throughput of modern materials research

vary tremendously. Representative examples of the current
state-of-the-art range from real-time control of single batches
of carbon nanotubes[27] and continuous flow organic synthe-
sis,[26] to tens of hydrothermal syntheses performed with the
help of humans,[20,23,24] to hundreds or thousands of reactions
performed in microwell plates[21] and in droplets,[22,25] up to
national-level synchrotron facilities.[36]

The software implemented to generate experiments and col-
lect data for machine learning are similarly diverse. Software
packages for materials chemistry have focused on closed-loop
operation with specific experiments, robotic hardware, and
algorithms, such as ARES to study single-walled carbon
nanotubes,[27] NREL-HTEM for physical vapor deposition of
inorganic thin films,[37] AIR-Chem targeting inorganic
perovskite quantum dots,[38] as well as a number of solutions
for polymer chemistry.[39,40] Like these, ChemOS, a recently
released modular software environment for autonomous labora-
tory operation, focuses primarily on optimization rather than
comprehensive data capture.[41] (We note in passing software
libraries for managing closed-loop computational organic,[42]

materials,[15,43] and heterogeneous catalyst[44] discovery
workflows.)

Generalizable automation and data capture in biology is
more mature and includes variants such as Wet Lab
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Accelerator,[45] Autoprotocol,[46] laboratory automation such
as Par-Par[47] and Roboliq,[48] full experimental workflow
and design with integrated LIMS such as Aquarium,[49] and
services offered by companies such as Emerald Cloud Lab[50]

and Transcriptic.[51,52]

Despite the advances in related fields described above, these
technologies have experienced limited integration into the
chemistry and materials science communities. Furthermore,
current technology environments provide limited support for
human–robot interfacing, do not support the organization of
unstructured or unprocessed data, and often are developed
without intention for distribution of curated datasets to non-
domain expert computer scientists (i.e., machine learning
experts). The development of an extensible framework for
materials science data collection should thereby include the fol-
lowing components: First, a generalizable mechanism for spec-
ifying machine-readable experiment plans that enable
operations via a web-based application programming interac-
tion (API). Second, the facilitation of hybrid human–robot
laboratory operations that enable the recording of data and opti-
mization of experiments. Third, a comprehensive capture of
data and metadata for a complete description of an experiment,
involving both human operations and associated machine-
generated files. Finally, processing the data into reports that
facilitate subsequent use in machine learning algorithms
operated by both domain expert chemists and non-domain
expert computer scientists.

We describe here a general data model and associated soft-
ware pipeline code—ESCALATE (Experiment Specification,
Capture and Laboratory Automation Technology)—that
addresses each of the needs discussed above. As an illustrative
specific example, we describe the ESCALATE implementation
for high-throughput exploratory synthesis of single-crystal
metal halide perovskites, a class of materials that has attracted
a great deal of both fundamental[53–55] and technologic interest
for application in photovoltaics,[56,57] sensors,[58] lighting,[59,60]

and batteries.[61] The experimental hardware, chemical process
details, and scientific outcomes of this “robot-ready perovskite”
synthesis method will be described elsewhere. This example is
used to showcase how the ESCALATE data model addresses
challenges related to capturing the distinction between experi-
mental intent and reality, hybrid human–machine laboratory
operations, data capture for multi-step multi-component reagent
preparation, handling increasingly complex datasets for
evolving chemistry workflows, and curating datasets useable
by non-domain experts for machine learning.

Lifecycle of a metal halide perovskite
experiment
A robot-ready metal halide perovskite synthesis provides a con-
crete example of our ESCALATE framework, and illustrates a
number of challenges associated with experiment specification
and capture that are solved by ESCALATE. Reagent stock
solutions consisting of one or more organic, inorganic, and sol-
vent chemicals must be prepared by a human operator, in a

process that includes manual weighing, followed by heating
and mixing. The intended compositions of these reagent
stock solutions cannot exceed the solubility limits of the spe-
cies. The resulting reagent solutions are then moved to a robotic
liquid handler capable of pipetting specified volumes into a set
of 96 individually-addressed glass vials (denoted as a “well”).
In addition to the order and timing of the reagent additions spe-
cific to each individual well, time-varying heating and shaking
conditions can be applied globally to the entire collection of
vials (denoted as a “plate”). The total volume of all species
in a valid experiment cannot exceed the volume limits of the
vial in which the experiment is contained. At the conclusion
of the synthesis, each vial is photographed from several angles,
and scored for the formation of crystals. Each well is an individ-
ual experimental entity, described by its own template, model,
and object information, but sharing common descriptions of
reagent stock solutions and plate-wide conditions.

The lifecycle of an experiment starts as a general “tem-
plate”, which is a structured, fill-in-the-blank form that pro-
vides a general pattern of information needed to specify an
experiment and any relevant experimental limits (see the left
side of Fig. 1). Specifying the prerequisite portions of the
experimental template generates a “model,” which contains
the intended laboratory actions and materials. Executing the
notional plan described by a model results in an “object” repre-
senting the particular physical laboratory instantiation. Each
object is characterized by its particular type, material, action,
observation, and outcome data, see Table I, as well as the
intended plan (model) and general experimental constraints
(template). Treating entities in this fashion allows us to track
the experimental intent, reproduce the particular experimental
execution, and clarify the relationship between the nominal
experiment and the empirical observations.

Each experimental entity proceeds through four states, as
shown in the right side of Fig. 1. The entity begins as a set
of templates describing the general process and experimental
constraints that must be satisfied. Chemicals are specified as
raw ingredients, described in terms of standardized identifiers
(e.g., InChIKey) with a set of known attributes (e.g., molecular
formula, molecular weight, density). A reagent-type (R) tem-
plate asks the user to specify specific chemicals and preparation
parameters (e.g., mixing time and temperature) and enforces
composition constraints (e.g., solubility constraints as a maxi-
mum concentration). An experiment-type (E) template asks
the user to specify both well- (e.g., statistical distributions of
the different reagent volumes to use) and plate-level intent
(e.g., addition times, temperature, and mixing conditions) and
enforces experimental constraints (e.g., minimum and maxi-
mum well-volume limits and operating temperatures).
Encoding the experimental constraints into the template allows
this to be generalized to other experiment types.

The operator provides the required inputs to the templates
using an ESCALATE executable to formally start the genera-
tion of models. ESCALATE returns the generated models to
the operator. Reagent models include nominal preparation
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instructions including actions, and materials necessary to pre-
pare the model. Experiment models contain associations with
the relevant reagent models as well as the necessary informa-
tion to perform the experiment in the laboratory.

“Objects” describe the physical reagents and experiments
conducted in the laboratory according to the instructions in
the model. Data collected about objects are distributed across
the type, material, action, observation, and outcome categories
as the experiment proceeds (see Table I). For metal halide
perovskite experiments, the empirical observations of reagents
and experiments include data such as solution volumes, mea-
sured temperatures, and concentrations. ESCALATE provides
forms for the operator to record observations regarding reagent
and experiment objects. The operator aims to capture variance

between the nominal specification of the model and the empir-
ical observations associated with a given object. These data are
especially important for accurately capturing the properties
which exhibit non-ideality during object preparation (i.e., con-
centration variance resulting from non-ideal solution mixtures).

For metal halide perovskite experiments, the operator
records two data points in the final step: (i) scoring based on
optical microscopy and (ii) photographic images of each well
of the robotic plate (Fig. 2). Optical microscopy data are
recorded as outcomes on a scale from 1 to 4, where 1–3 indi-
cates a “failure” to produce large single significant crystals,
and 4 indicates the “success” of producing large single crystals.

The “type” category describes general information about the
nature of the entity, who interacted with the entity, where the

Figure 1. Lifecycle of a metal halide perovskite experimental object starting from the specification of a template experiment through the execution of each
experiment object.

Table I. Chemical ontology for data collection outlining categories of data collection throughout the pipeline.

Category Overview Examples

Type Metadata template Location, date, time, additional associated types

Material Experiment inputs Chemical identity, reagents, equipment, instruments

Action Materials process Heating/cooling (time temperature), stirring, reaction time

Observation Empirical data Chemical measurements, pH, empirical volumes

Outcome Product(s) of the experiment Optical microscopy(classification), reaction images, XRD, NMR
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entity was created, as well as any associated entities and rele-
vant relationships. Data grouped by type record metadata relat-
ing to an entity or to group similar entities together. The
“material” category describes the physical components that
are part of the entity, such as chemicals, reagents, equipment,
and instruments. The “action” category describes operations
performed by or to the entity. An “observation” consists of
empirical data captured during the course of an experiment;
this can include both structured machine-generated data files
as well as unstructured general comments from the human
operator. An “outcome” is a subcategory of observation
describing a (intermediate) product; flagging these as possible
dependent variables facilitates use by data scientists.
Additional discussion of categories can be found in the
Supplementary Information (Fig. S1).

Capture
Subsequent sections of this article detail the underlying soft-
ware process of ESCALATE for metal halide perovskite data
capture and reporting. There are five key data capture steps
positioned throughout the pipeline. Each section of data capture
has been designed with extensibility, flexibility, and with a
regime for reporting in mind. The points discussed in the fol-
lowing sections should provide sufficient background to extend
ESCALATE to other materials investigations. ESCALATE is

designed as a lightweight way to collect comprehensive data
from existing and new experiments, and simplify the data cap-
ture, reporting, and transition to “closed loop” operation.
ESCALATE is equally suited to any combination of human-
and automated processes, unlike comprehensive self-driving
laboratory software designed for fully automated opera-
tion,[41,62] and well-tailored high-throughput infrastructures
for specific materials problems.[27] Rather than providing a sin-
gle implementation strategy, ESCALATE facilitates data
reporting and experiment specification through a human- and
machine-interpretable file infrastructure compatible with most
machine learning programming languages. The key forms, as
well as a brief description of the operation of the pipeline soft-
ware, are outlined in Fig. 2.

Specify
The first point of data collection involves capturing user-
provided information to initialize the software (Fig. 2). These
data are descriptions of the type of experiment, including
what is generally referred to as the metadata of the entity.
ESCALATE uses an executable script to capture initial user
specifications. ESCALATE parses the provided constraints
which include chemicals, reagent, and custom constraints on
the experimental entity. An example of the data captured in
the specification step of ESCALATE is provided in Table II.

Figure 2. Operational overview of ESCALATE detailing data collection forms and distribution of data into ontologic components leading to a final curated data
frame.
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The experimental template constrains the experimental sys-
tem and imposes requirements on data needed to define the sub-
sequent models, specifically: a unique identifier (UID), version
control for software and experimental process chemistry, and
placeholders for the input reagents and chemical identifiers,
and laboratory equipment/instrumentation needed. Requiring
these data as part of specifying a template ensures that a com-
mon baseline of data exists for similar templates.

Chemicals and reagents have locally-resolved UIDs. For
example, a URL accessible tabulated data entry form (such as
those provided by an online spreadsheet) can store the list of
the chemical components of a given reagent model along
with an associated UID. In our ontology, “chemicals” describe
pure compounds. We use InChIKeys; other identifiers (e.g.,
SMILES, InChI strings, CAS numbers, PubChem ID) can be
used by ESCALATE, but in practice these have problems
with canonical order and copyright. In principle, chemical
provenance could be further tracked to specific laboratory
inventory items, as is done in Aquarium,[49] but this adds too
much complexity to the early stages of data capture.
“Reagents” describe a set of chemicals along with preparation
instructions expressed as an extension to Autoprotocol[46] (see
Table II). Each reagent is assigned a UID, which allows for
comparison across experiments. Competing approaches for
assigning UIDs for reagents to UIDs are also available, such
as Synbiohub for biologic components,[63] or proposed
IUPAC systems, such as RInChI or MInChI for descriptions
of reactions and mixtures,[64] respectively, but these only
track composition and do not specify preparation conditions
such as temperature and mixing parameters.

Equipment and instrumentation provide the last pieces of
information needed to constrain the generation of models
from a template. In the metal halide perovskite chemistry, the
selection of the equipment determines the number of parallel
reactions (i.e., how many wells), as well as setting baselines
for nominal reaction conditions in the model. For instance, a
different type of reaction plate, one being an aluminum block

and the other being steel, would exhibit different thermal prop-
erties across the plate. This, in turn, would affect the nominal
temperature of each reaction well, and thereby alter the nominal
temperature proposed for a given experiment at a particular
location on the plate. Assigning an equipment UID provides
another layer of necessary information for accurately capturing
the intention of the experiment and generating accurate nominal
models.

Depending on the experiment, other metadata could be tied
to the template selection and initial model generation. For
instance, the location where the experiment is performed, the
chemist executing the code, and a notes section are reasonable
data to capture when implementing a template for the genera-
tion of models.

Generate
Valid experiments must obey experiment-specific technical
constraints (e.g., the total volume of reagents added cannot
exceed the container volume) and composition-dependent
physical constraints (e.g., the final concentration of a species
cannot be greater than the most concentrated reagent solution).
ESCALATE enforces these limits using the experiment tem-
plate and reagent model description. For a given template, the
chemical space is bounded hierarchically by the following con-
straints: (1) the material limits (i.e., the size and mass con-
straints of the equipment); (2) the type of reagent, and
thereby the concentration of chemicals in the reagents; and
(3) user-defined constraints (i.e., user-defined minimum con-
centration of a given chemical). Each additional constraint
shrinks the potential search space, which can be quantified
through the volume of the convex hull encapsulating possible
points in chemical space. For instance, the lower concentration
boundary for the organic component of a metal halide perov-
skite experiment is defined not by the binary mixture contain-
ing the organic and solvent, but by the ternary stock solution
of inorganic (PbI2), organic (e.g., ethyl ammonium iodide
needed to solubilize the inorganic), and solvent (e.g., γ

Table II. Examples of the structure of data collection necessary to successfully generate perovskite experimental template file.

Category Content Entry category Entry example

Type Run overview Run ID, experimenter name, number of
experiments, notes

2018-07-05T15_03_19.157863+00_00_LBL
(yyyy-mm-ddTHH_MM_SS.SSSSSS
+UTCLabel_Lab)

Type Version
control

Software version, experimental protocol name,
process ID

Version 1.0, Perovskite 1.0

Materials Equipment Reaction Vessels, Instrumentation Vials, plates, equipment, instruments UV-vis, IR, XRD

Materials Chemicals Chemical Identifier InChI, InChIKey, Canonical SMILES

Materials and
actions

Reagents Reagent identifier, reagent formulation with
procedure

{Reagent ID: ##, chemicals: [{InChI: ##,
nominal_amount: ##, actual_amount: ##}, {. . .} ],
instructions: [{op: stir, duration: 0.5,
duration_units: hr}, {. . .}], operator: name, {. . .}}
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butyrolactone). To satisfy the dependency of the organic con-
centration originating from two reagents, ESCALATE samples
the reagent volumes starting from the reagent with the most
chemical components with conflicts or exceptions resolved
by user specification. In this case, the volume of the ternary
inorganic mixture is sampled first, followed by the binary
organic mixture containing solvent and the organic, with the
solvent volume sampled last. ESCALATE incorporates limits
from each of the entities provided by the template, analyzes
the boundaries through the described hierarchy [Fig. 3(b)],
and samples from the maximum accessible convex hull to gen-
erate the desired number of experimental models.

ESCALATE provides two modes of experiment generation:
(1) quasi-random sampling of a limited number of experiments
within the user-specified constraints [Fig. 3(b)] and (2) exhaustive
generation of the possible experimental “state space” suitable for
use by external experiment recommendation programs (Fig. 4).

Quasi-random experiments generation
Efficient exploration of the multidimensional composition
space is a challenging problem. The naive human strategy is

to alter a single variable at a time [Fig. 3(a)], but this is ineffi-
cient and does not capture multivariate changes.[24,31] Full or
partial factorial grid searches are commonly employed in the
statistical design of the experiments, but have the disadvantage
of requiring prior knowledge of grid spacing and variable inter-
action orders. During the first exploration of a new chemical
space, an expedient strategy is to generate a quasi-random
distribution of compositions [Fig. 3(b)], which unlike pseudo-
random sequences, minimize the discrepancy between subin-
tervals.[65] No prior knowledge of the relevant spacings is
needed and each well composition is generated independently.
This has the twofold advantage of (i) avoiding systematic spu-
rious correlations between the position of the well (e.g., incon-
sistent heating or shaking) and the well composition and (ii)
allowing an arbitrary number of experiments to be generated
that adequately sample the accessible composition space.

Exhaustive experimental state space generation
A fully sampled convex hull defines the complete experimental
“state space.” A file of this “state-set” provides non-domain
expert collaborators with the full set of feasible experiments.
ESCALATE generates a state space file containing the full
reaction description (e.g., concentrations, physicochemical
properties, etc.) to the operational specifications needed to
define the experiment model (e.g., masses and volumes of
chemicals needed). This enables machine learning algorithms
to work with the full description of the experiment as an
input, without having to carry out these calculations separately.
An example of the state space for the PbI2, EtNH3I, and formic
acid metal halide perovskite system is shown in Fig. 4.

The state-set CSV file for PbI2, EtNH3I, and formic acid
system (three stock solution volume choices) is generated
such that each point in the “state-set” refers to unique experi-
ment. The estimated liquid handler dispensing precision is
±5 µL resulting in 10 µL spacing between points along a

Figure 3. (a) Single Variable Modulation and (b) quasi-random sampling of
metal halide perovskite chemical space in three dimensions. Constraints are
illustrated for quasi-random sampling.

Figure 4. Visual representation of a reduced density state space for PbI2,
EtNH3I, and formic acid metal halide perovskite system.
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given reagent axis in the state space.[66] In addition to the three
reagent concentrations, the values of 67 reaction descriptors are
included for each experiment in the “state-set.” The “state-set”
generation requires approximately 15 s on a modern desktop
computer and generates an approximately 200 megabyte file.
At larger numbers of variables, the increase in computational
resources required to generate and store the “state-set” becomes
prohibitive; a solution to this scaling problem is on-demand
validation of the proposed experiment plans, and is currently
under development.

The state-set, along with curated and normalized data from
previous experiments (i.e., training set), provides a means for
outside collaborators, using their own preferred machine-
learning strategies, to recommend possible reactions to the
experimental process. Using a state-set as an intermediary
enables participation without requiring a collaborator to under-
stand specific experiment constraints or develop a mapping
from reagent volume to chemical concentration. A non-expert
user or artificial intelligence program only needs to recommend
an experiment model from the state space to ensure that the
constraints of the experimental template are met and that the
object will be incorporated into the pipeline.

Prepare
After performing the experiment generation, described above,
ESCALATE has defined a nominal model for each of the enti-
ties (reagent, chemicals, and experiments as in Fig. 1) which
can be fully characterized by the type,material, and actions cat-
egories. The generated experimental models include all infor-
mation necessary to fully describe the nominal experiments,
including reaction temperatures, mixing times, equipment
descriptions, specific locations on the robotic plate, and reagent
dispensing data.

ESCALATE next sums the target dispense volume of each
reagent for all generated experiments occurring on a single
96-well plate and calculates the total nominal amount of each
chemical needed to prepare a sufficient quantity of each
reagent. Chemical information required to calculate unit con-
versions for presentation to the operator (e.g., molecular
weight, density) is centrally stored in a human interfaceable
web-hosted spreadsheet.

The reagent models along with the nominal preparation
instructions are provided to the operator as an interactive
form with specific handling instructions (temperature, stir
rate, duration, etc.) along with nominal amounts of each chem-
ical necessary to prepare the reagents. More generally, interac-
tive forms provide a means to expose intermediary data during
ESCALATE operation. The reagent model/object interface pro-
vides a single repository for both the reagent data calculated
during experimental model generation as well as observations
about the reagent objects prepared in the laboratory. In partic-
ular, the shared form minimizes human error during entry by
automatically prefilling available sections and highlighting to
the operator the sections for recording materials, observations,
and notes.

A simplified example of the interactive data-entry form is
shown in Fig. 5. A full example of the metal halide perovskite
interactive form file is discussed in the Supplementary
Information. A more detailed illustration is also included as
Fig. S2. The completed form is converted to JSON format,[67]

a human readable and computer interpretable format, for later
data workup and post-processing.

Execute
Execution of experiment objects generated by ESCALATE has
been predominantly performed by a Hamilton Microlab
NIMBUS4 robot. The current configuration of the Hamilton
software uses an XLS formatted control file to instruct the vol-
ume dispensed into each of the 96 wells on a plate. For our par-
ticular purposes, ESCALATE has been programmed to output
experimental models as a spreadsheet, but the final output of
the experimental object file is flexible. A subset of the experi-
mental model file is provided in Table III and a specific exam-
ple file is discussed in the Supplementary Information
(Experiment-Model_RobotInput.xls).

Note that the experimental model file includes type informa-
tion, relevant for describing the particular location on the plate
an experiment is being performed. Nominal reagent dispensing
information is dictated to the robot on a well-by-well basis and
can vary from one experiment to the next. Other properties such
as reaction time, mixing conditions, and temperature are nom-
inal values that apply to the reaction plate as a whole; the robot
does not have the ability to mix individual wells at different
rates.

ESCALATE has also been used in combination with human
operators for reagent dispensing with little alteration of the
code. For instance, manually dispensing highly varied volumes
to specific locations on a plate is tedious. To ease implementa-
tion for human interaction, manual modification of the nominal
reagent volumes after generation of the experimental model is
fully supported. Thereby, an operator can alter the experimental
model file if necessary to accurately capture the intention of the
experiments.

Observe
Observations collected during the perovskite experiments
include ambient temperature and humidity, thermal images
which map the actual temperature across the heating block,
operator notes, liquid handler operational log files, instrument
configuration and setting files, images of the products, and
the final experimental outcome. Instrument output files are cop-
ied directly to the online repository for later use and human
observations are recorded by the operator during the experi-
ment. Metadata capture and management solutions for instru-
mentation, such as Allotrope Standard,[68] can be included as
files in the ESCALATE data lake.

Other files collected during ESCALATE operation,
including parsable outputs from instruments, images, and log
files, are attributed to the relevant experiments. The advantage
of a data lake architecture is that no initial effort needs to be
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invested in parsing them before they can be collected.
However, by storing them all, should scientific interest arise,
a future processing pipeline can retroactively extract the rele-
vant data. A full example of the data collected during typical
ESCALATE operation is included as and discussed in the
Supplementary Information.

Report
The second portion of code processes the gathered data into a
structured format that can be used for analysis (e.g., data visu-
alization, machine learning), as depicted in Fig. 6. Categories of
data (i.e., material, action, etc.) can be individually targeted by
coding operations designed for converting grouped data into
the final report. For example, the final concentration of a

particular chemical in an experiment is dependent upon empir-
ical measurements contained in the reagent model and the
experimental model, two large repositories of data. However,
the material category contains all of the information necessary
to characterize the concentration of a specific chemical in the
final experiment. More importantly, the organization of the
data into the material category provides a target staging plat-
form for the development of automated data processing pipe-
lines. The categories are thereby effective not only from the
perspective of ensuring accurate data capture, but also for pro-
viding an extensible platform to apply ESCALATE to new
classes of experiments.

The report format depends upon the recipient and the type of
experiment. For shallow datasets with a limited total number of

Figure 5. Representation of the simplified reagent model/object interface for capturing metal halide perovskite reagent preparation. Highlighted sections are
observations required for executing subsequent steps of the pipeline, all other cells are filled by ESCALATE.

Table III. Example of selected entries taken from the experimental models’ file (robot input file) including the nominal values for entities (vial site, labware),
materials (reagents), actions (temperature, mixing).

Vial
Site labware ID

Reagent 1
(μL)

Reagent 2
(μL)

Reagent 3
(μL)

Reaction
temperature

(C)
Reaction
time (s)

Mix rate
(rpm)

Mix
time (s)

Reagent 1
temperature (C)

A1 Symyx_96_well 402 50 48 70 12,600 750 900 45

B1 Symyx_96_well 78 29 393 70 12,600 750 900 45

– – – – – – – – – –

H12 Symyx_96_well 211 114 175 70 12,600 750 900 45
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experiments, as is common in materials chemistry research, a
two-dimensional data array file (e.g., CSV) is readily imported
by data processing packages. Data presented in two dimensions
are often wide (i.e., large numbers of columns) which encum-
ber human inspection and analysis without the aid of additional
software. Employing systematic naming schemes can aid in
the processing of 2d data. The implementation used in
ESCALATE is outlined in Table IV.

The key features of the naming syntax include (1)
keyword-oriented titles; (2) informative, machine-parsable pre-
fixes and suffixes; (3) avoiding spaces. Keywords provide a
general description of what is contained in a particular column
of data. If a user or program needs to operate on all “chemical”
and “InChIKey” information, then the column headers must be
similar enough to be generally referenced. Further specification
by the user could include a numerical argument, “reagent_1_
chemical_1_InChIKey” providing only the InChIKey from a
specific chemical in “reagent 1.”

Data presentation generated by ESCALATE uses prefixes
to help parse different general categories of data. “Raw” refers
to unprocessed data that are often unsuitable for consumption
by non-domain experts. An example is extensive quantities
such as mass that specify a particular experiment, even though
the intensive property of concentration is more relevant. “Rxn”
includes both processed and unprocessed data experimental spec-
ifications that are suitable for machine learning and data analysis.
“Feat” and “calc” describe the physicochemical properties of the
chemicals and reagent mixtures, respectively, and are calculated
using ChemAxon[69] and RDKit[70] in the current implementa-
tion. “Out” indicates suitable dependent variables to be predicted
by machine learning applications (e.g., metal halide perovskite
crystal score). Suffixes distinguish “nominal” (i.e., experimental
intent) and “actual” (i.e., empirical observation) values. Using an
underscore or hyphen delineated division between prefix,
description, and suffix avoids common problems with parsing
as some programming languages handle spaces poorly.

Figure 6. ESCALATE process for generating the final report data frame.

Table IV. Overview of the namespace for dataset normalization.

Header Prefix/suffix Description of header Example

_raw_* Unprocessed raw data from pipeline _raw_reagent_3_conc

_rxn_* Processed data from pipeline _rxn_M_organic_actual

_feat_* Molecular features (various sources*) _feat_VDWSurfaceArea

_out_* Processed output data from pipeline (model targets) _out_crystalscore

_calc_* Calculated features based on processed experimental data _calc_avgNVDWVol

*_actual_ Measured chemical, reagent, and experimental properties _rxn_M_inorganic_actual

*_nominal_ Proposed chemical, reagent, and experimental properties _rxn_M_acid_nominal

* is a wildcard indicating any combination of characters, phrases, or abbreviations are acceptable at the indicated position.
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A simplified example of an ESCALATE rendered report in
the format of a 2d data frame is presented in Table V, a full
example from a single plate of reactions is included as
FinalReport_2d_Curated.csv with the Supplementary
Information. Each row of the final data frame represents a com-
plete description of the experimental intent and the perfor-
mance of the nominal experiment. The namespace,
“RunID_Vial,” is a concatenation of the well site in which
the reaction was performed in combination with the previously
described “Run ID.” The namespace represents the UID of the
experiment; no duplicates should exist in the final dataset. The
headers contain the relevant prefixes and suffixes to describe
the data and are organized in such a way to group similar data.

ESCALATE curates experimental data to support “best-
practices” such as the F.A.I.R. data principles,[71] which calls
for making the data Findable, Accessible, Interoperable, and
Reusable. ESCALATE makes the data findable by assigning
each experiment a unique human- and machine-readable
identifier to maintain origin, laboratory, operator, and date prove-
nance to each entry. ESCALATE is not a publication/dissemina-
tion platform, but broader accessibility can be achieved by upload
to public repositories such as NREL’s HTEM DB[37] or
Citrine.[72] Interoperability is provided by the report generation
which compiles the experimental data and metadata into a CSV
format, which can be imported into awide variety of visualization,
statistics, andmachine learning packages. The report also incorpo-
rates calculations of physicochemical properties of the reagents,
stoichiometry, concentration, etc., that facilitate the use of these
data by non-domain experts. The data are reusable at two levels.
The output reports described above are reusable for various anal-
yses. Furthermore, the metadata persistently associated with each
item in the data lake allows for retroactive retrieval and analysis of
other experimental details should a future need arise.

Closed-loop operation
The current infrastructure for closed-loop operation uses two
CSV files in a shared directory to provide the report of past

experimental results that can be used to train the model and
the state-set of possible experiments. The state-set includes a
complete description of each nominal model experiment,
including all of the computed material physicochemical fea-
tures and stoichiometric calculations that are included in the
report. By providing all of the necessary domain-specific calcu-
lations, the report and state-set files allow non-domain experts
to easily import the existing metal halide perovskite dataset,
train a model using existing data, and make recommendations
for upcoming experiments. Experiment recommendations are
communicated by writing a file containing a list of desired
state-set indices into a shared directory. An ESCALATE com-
mand line program reads these files and generates the complete
experiment description (experiment template, experiment
model, reagent model, etc.) to be performed by the operator.
ChemOS uses a similar shared-filed based scheme for
closed-loop operation.[41] An experiment submission and vali-
dation API is currently under development.

Results
ESCALATE has been operating for 10 months as of April
2019. In that time, the data pipeline has operated a total of 55
times, capturing a total of 4336 single-crystal metal halide
perovskite reactions. The throughput volume of data capture
using this software is illustrated in Fig. 7(a).

The throughput of data collection has only been limited by
experimental capacity; ESCALATE has facilitated the maxi-
mum bandwidth of experiments possible. These data represent
one of the largest metal halide perovskite crystallization data-
sets ever curated. The comprehensive data capture pipeline
results in a dataset containing all of the “dark reactions”—oth-
erwise unreported “failures” and marginal success—that are
crucial for the development of machine learning models in
materials science research.[20] The template-driven experiment
generation results in an unbiased sampling of chemical space.
The ontology and data structure developed for ESCALATE
has also enabled collaboration with non-domain experts. Four

Table V. Final data-frame structured for distribution.

RunID_vial
_out

_crystalscore
_rxn_M _organic

_actual
_rxn_C _temperature

_actual _feat_* _calc_* _raw_*

2017-10-16T17_52_59.000000
+00_00_LBL_A1

1 2.924 77 ## ## ##

– – – – – – –

2018-12-06T17_08_57.099365
+00_00_LBL_H3

2 0.826 67 ## ## ##

2018-12-06T17_08_57.099365
+00_00_LBL_H4

4 1.571 67 ## ## ##

2018-12-06T17_08_57.099365
+00_00_LBL_H5

1 4.180 67 ## ## ##

* is a wildcard indicating any combination of characters, phrases, or abbreviations are acceptable at the indicated position.
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research groups—at Lawrence Berkeley National Laboratory,
the Broad Institute, Haverford College, and Netrias—com-
prised of a mixture of chemists, materials scientists, computer
scientists, and mathematicians—have recommended more
than 96 metal halide perovskite experiments per week gener-
ated by a variety of machine learning algorithms trained on
ESCALATE generated report CSV files. These recommended
experiments are conducted at the Lawrence Berkeley National
Laboratory’s Molecular Foundry, resulting in a total of 16 iter-
ations of a DARPA sponsored interactive campaign for materi-
als discovery. This campaign is ongoing, and results will be
reported in future articles.

Various experimental workflows have been developed in
the laboratory and implemented using ESCALATE for data

capture. The most successful workflow has covered eight dif-
ferent single-crystal metal halide perovskite experiments
using lead iodide, an ammonium iodide, and formic acid in
GBL [Fig. 7(b)]. Work is underway to further broaden
ESCALATE to aid in the exploration of metal halide perovskite
chemical space. Specifically, we aim to incorporate additional
halides, amines, and inorganics and various crystallization
regimes into this dataset in the near future.

Current limitations
Limitations of the current version of ESCALATE reflect the
experimental needs of the perovskite experiments discussed
above, in which up to seven human-prepared solutions of
reagents (comprised of up to three chemicals) are dispensed

Figure 7. (a) Total experimental throughput of curated experiments captured by ESCALATE present in the final dataset by month; (b) number of experiments
performed for different organic cations (ammonium iodide salt).
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as solutions either by a human operator or robot in batches of no
more than 96 experiments. (The underlying data handling sup-
ports an unlimited number of reagents and chemicals, but the
current ESCALATE generated graphical user interface is lim-
ited to up to three chemicals per reagent for the human operator
instruction, and up to seven reagents per experiment for the liq-
uid handler control file. The other core functionalities of
ESCALATE—specification, generation, preparation, observa-
tion, and reporting—support input of any number of chemicals
per reagent composition, number of reagent solutions, and
number of experiments.) In the example described in this arti-
cle, ESCALATE generates the experimental model file as an
XLS in the format used by a Hamilton Microlab NIMBUS4
robot. The experimental model file used to operate the
NIMBUS liquid handler robot also includes the robotic execu-
tion control file specific to this instrument and experiment type.
These instrument- and vendor-specific programs can be modi-
fied by the users for the desired application and instrumentation
available; a copy is retained in the data lake for each
experiment.

The data handling is performed using pandas dataframes
which have a variety of native output formats[73] that allow
the experimental model, reagent model, and final report files
to be rendered as a CSV, textfile, XLSX, or other standard for-
mats via minor modifications of the code; exceptions to the
pandas data handling occurs only in intermediary file storage
mechanisms (e.g., Autoprotocol formatted JSON). Closed-
loop execution is initiated by executing a command line
program that reads the recommended experiments from the
state-set CSV, similar to the operation of ChemOS.[41]

Concluding remarks
ESCALATE is both an ontologic framework for describing
experimental entities in a computer-friendly format and a soft-
ware package for facilitating experiment specification, data
capture, and reporting. The initial development of infrastructure
can be a daunting task for scientists unfamiliar with the process.
Often the simplest course of action is to start by organizing the
relevant types, materials, actions, observations, and outcomes
needed to describe the target system. This article describes
examples of data belonging to these categories and demon-
strates how to assemble meaningful datasets from typical labo-
ratory processes, organized around familiar chemical concepts
and structured to facilitate both human and machine interpret-
ability. We offer a specific demonstration to single-crystal
metal halide perovskite synthesis, which illustrates laboratory
manipulations, high-throughput applications, and interfacing
challenges common to many research endeavors. The combina-
tion of this ontology with the software package makes it easy
for experimentalists to start collecting valuable, comprehensive
datasets in automated and semi-automated laboratory environ-
ments without a large initial investment in database design.
Additionally, a non-expert user or artificial intelligence pro-
gram need only recommend an experiment generated by
ESCALATE to ensure that the constraints of the chemical

system are met and can be performed in the laboratory.
Captured files are stored in a way that facilitates transparent
access by users, even those without programming background.
At the same time, the structure imposed by the ontology facil-
itates future data extraction. Future work will be aimed at
improving data workflow, generalizing ESCALATE to addi-
tional experimental systems, and closed-loop autonomous
experimental design.

Code availability
The code used for this project can be found at the following
links: https://github.com/darkreactions/ESCALATE_Capture
and https://github.com/darkreactions/ESCALATE_report and
is released under an MIT license. Discussion about code imple-
mentation and a comprehensive overview of a single iteration
of ESCALATE along with the associated files can be found
in the Supplementary Information.

Supplementary material
The supplementary material for this article can be found at
https://doi.org/10.1557/mrc.2019.72.
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