
Convex Hull for Probabilistic Points
F. Betul Atalay Sorelle A. Friedler Dianna Xu

Dept. of Computer Engineering Dept. of Computer Science Dept. of Computer Science
TOBB University of Economics Haverford College Bryn Mawr College

and Technology 370 W. Lancaster Avenue 101 N. Merion Avenue
Sogutozu, Ankara, Turkey Haverford, PA 19041, USA Bryn Mawr, PA 19010, USA

fatalay@etu.edu.tr sorelle@cs.haverford.edu dxu@cs.brynmawr.edu

Abstract—We analyze the correctness of an O(n log n) time
divide-and-conquer algorithm for the convex hull problem when
each input point is a location determined by a normal dis-
tribution. We show that the algorithm finds the convex hull
of such probabilistic points to precision within some expected
correctness determined by a user-given confidence value φ. In
order to precisely explain how correct the resulting structure
is, we introduce a new certificate error model for calculating
and understanding approximate geometric error based on the
fundamental properties of a geometric structure. We show that
this new error model implies correctness under a robust statistical
error model, in which each point lies within the hull with
probability at least φ, for the convex hull problem.

I. INTRODUCTION

The Convex Hull Problem is the problem of determining a

minimum convex bounding polygon that covers n points in

the Euclidean plane.

Fig. 1. A point set and its convex hull

This is a classic problem in computational geometry, with

well known solutions including Graham’s scan and divide-and-

conquer (both take O(n log n) time) [8], [15]. The convex hull

is a fundamental primitive for many graphics problems, such as

calculation of basic shape representations (e.g., bounding boxes)

[17] and collision detection [13]. In application domains, point

locations are often the result of a machine learning algorithm

that outputs a probability distribution for each point’s location

(for a survey, see [11]). For example, in augmented reality, the

markerless tracking problem that aims to track the position and

orientation of a camera in a scene without using markers may

take a hybrid approach that relies on both computer vision

techniques and probabilistic GPS location information of the

type generated by such machine learning algorithms [18]. In

this paper, we are interested in examining what happens when

the expected values of such probabilistic points are given as

input to the divide-and-conquer convex hull algorithm, with the

goal of guaranteeing approximate correctness of the resulting

convex hull without requiring extensive modification to existing

algorithms.

We will show that the divide-and-conquer convex hull

algorithm still produces an approximately correct convex hull

even when its input point locations aren’t known exactly. This

will require some modifications to the algorithm as well as an

introduction of a new error model in order to define what we

mean by an approximately correct convex hull. We will build

this new approximate notion on boolean functions that certify

geometric properties necessary to a correct calculation of the

convex hull. These functions are borrowed from the study

of kinetic data structures [5], and so some of this work will

find application to other problems studied within that boolean

certification framework (as well as allowing future work to

extend these results to hold on moving points). A careful

analysis will show how potential errors in these certifications

propagate to the overall structure being calculated. The convex

hull will be approximate in the sense that only a given percent

of the points will be expected to lie within it. This matches the

desires of some applications - for example, when determining

the home range of an animal from (noisy) location observations,

the goal is to compute a boundary containing some percentage

of such observations [6].

A. Related Work

Approximate correctness of a geometric structure has been

considered under a number of different models, including

interpretations where the structure is considered to be fully

correct some percentage of time or where it is considered to be

partially correct every time the algorithm is run. We are most

interested in this second interpretation, within which partial

correctness has been considered under the absolute error model

[7], the relative error model [3], and the robust error model [16].

Within the absolute error model a structure is considered to be

correct up to some given fixed error bound ε that is constant

for any set of points [7]. Under the relative error model a

structure is considered to be correct up to some percentage

based on the geometric structure [3]. The robust error model
is a per-point error model under which a structure is correct

based on the percentage of points which are correct [16]. We

will compare the error model we introduce to the robust error

model.

While classical computational geometry assumes exact

knowledge of point location, goals of relaxing such assumptions

have spurred several recent papers. Loeffler and Kreveld [14]
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have considered approximate convex hulls under an imprecise

point setting, where exact point location is unknown within a

region but guaranteed not to be outside of it. They consider

the convex hull under multiple variants of the relative error

model and achieve running times that range from O(n log n)
to O(n13). When considering approximate nearest neighbor

searching, a model where points are described as probability

distributions over their possible locations has also been con-

sidered [1]. This latter model of point location, commonly

used in application domains, is the same as the one we use

here (and is described in more detail in Section II-A). The

convex hull problem has been considered within the discrete

version of this point location model (where the distributions

are discrete) by Agarwal et al. [2]. Their results give a running

time of O(m log3 m), where m is the number of possible point

locations in their discrete distributions. The robust error model

in Argarwal et al implies the one we compute. While we solve

a weaker version of the problem, we improve the running time

to O(n log n), where n is the number of points. Additionally,

ours is the first solution to hold on continuous distributions.

We use an O(n log n) divide-and-conquer algorithm to

compute the convex hull on a set of probabilistic points under

normal distributions. Our solution is approximately correct

under a robust error model with the correctness taken in

expectation over all possible point locations, so that each point

has at least φ probability of being in the hull, for a parameter

φ. Ours is the first solution to hold for probabilistic points

with a continuous location probability distribution.

We achieve these results not by introducing a new algorithm,

but by introducing a new error model and associated analysis

of the standard divide-and-conquer algorithm for calculating

the convex hull via its upper envelope in the dual space [15].

We introduce a certificate error model in which a structure

is considered φ-correct if each Boolean certificate used to

calculate the structure is correct with probability at least φ. We

will show that approximate correctness under the certificate

error model implies approximate correctness under the robust

error model for the convex hull.

B. Contributions

The rest of this paper shows the following results:

1) We introduce a certificate error model guaranteeing that

each certificate is correct with probability φ, and a proof

that this new error model implies the robust error model

for the convex hull problem. (See Sections IV and V.)

2) We adapt an O(n log n) algorithm to compute the convex

hull for probabilistic points. We show that this algorithm

is approximately correct in expectation over all possible

point locations, under a robust error model guaranteeing

that each point is within the hull with probability at least

φ. (See Section III.)

II. PRELIMINARIES

A. Probabilistic Points

We define a probabilistic point pj = (Nj , vj) where Nj is

a normal probability distribution over its possible locations

Fig. 2. A Google Maps screenshot showing a probabilistic point pj under a
normal distribution Dj where the central blue dot is vj and the lighter blue
circle is its associated βj(φ,Dj).

and vj ∈ R
d is an expected value for the point pj given

distribution Nj . We are given a set P of n probabilistic points.

Dj = {x ∈ R
d|Npdf

j (x) > 0} is the positive region of the

probability density function Npdf
j : Rd → {y ∈ R|y ≥ 0}. We

assume that the region Dj is bounded. Let βj(φ,Dj) ⊂ R
d be

the boundary region of point pj defined as the minimum-area

convex set such that pj is within the region with probability

φ, i.e.,
∫

x∈βj(φ,Dj)

Npdf
j (x)dx = φ. φ ∈ [0, 1] is a user-given

confidence value, and Φ = 100 · φ is φ in percent form. We

assume that βj(φ,Dj) can be calculated in O(1) time. For

example, Figure 2 shows βj(φ,Dj) as the truncated Gaussian.

For the remainder of this paper we will refer to these

probabilistic points pj = (Dj , vj) simply as points. Within

a machine learning context, these points would be generated

by a model M(j, E) → pj that, when given a point identity

j and environmental data E, would return the probabilistic

point pj . More details about such models can be found in

a survey of location models [11]. We will assume that this

model is good enough that the point locations can generally be

distinguished from each other, i.e., that for pi, pj ∈ P , drawn

from the distribution created by the model,

Pr[βi(φ,Di) ∩ βj(φ,Dj) = ∅] ≥ φ .

B. Certificates

Given a set of probabilistic points, we develop a framework

that approximately maintains a geometric structure G up to

some expected correctness. We define a set of certificates

C that guarantee local geometric relationships crucial to the

correctness of the entire structure. For example, a single

certificate might guarantee that three points are oriented

in a counter-clockwise relationship. C can be considered a

proof of the correctness of G. These certificates are the same
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as those maintained in classic kinetic data structure (KDS)

settings [5] (we will extend them later). The set C consists

of pairs containing a Boolean function c which operates on

a set of points Pi ⊂ P and the set of points Pi on which that

function evaluates to True. Such a pair (c, Pi) is called a

certificate. Within a single set C, there can be multiple types

of such functions c, certifying different geometric properties.

For notational ease we will abuse notation below and refer

to all such functions as c. A set of certificates C must satisfy

the following local geometric properties as given in [5].

Property II.1 (Locality). For all points pj ∈ P , |{Pi | pj ∈
Pi and (c, Pi) ∈ C}| is O(polylog(n)) or O(nε) for
arbitrarily small values of ε.

Property II.2 (Compactness). |C| is O(n polylog(n)) or
O(n1+ε) for arbitrarily small ε.

Property II.3 (Exclusivity). |Pi| ≤ k for all (c, Pi) ∈ C,
Pi ⊂ P , and small constant k.

Locality and compactness are both required within the

KDS framework and exclusivity is also generally assumed

[5]. Thus, we can draw on a large body of existing work

defining certificates for a wide variety of problems. (See [10]).

Notably, these certificates certify the steps of certain locally

constrained algorithms and incrementally constructed problem

solutions. Divide and conquer algorithms often make good

candidates for such problem certification mechanisms; Each

decision in the merge process constitutes a certificate.

We add to the KDS understanding of certificates to take into

account the probabilistic nature of the points.

Definition II.4 (φ-correct certificate). A certificate (c, Pi) for
which

Pr[c(Pi) = True] ≥ φ

with the probability taken over the distribution of possible
point locations for points pj = (Nj , vj) for pj ∈ Pi.

For example, a simple certificate (aboveφ, Pi) with Pi =
{p1, p2} certifies that p1 is above p2 with probability at

least φ. (See Section IV for a more extensive example of

a problem using such certificates.) It will be useful to note

that vj ∈ βj(φ,Dj) for all pj ∈ Pi since Nj is a normal

distribution. If all certificates are φ-correct for φ = 1, then

the geometric structure G has been correctly calculated. The

main motivation of this paper is to consider the correctness

for values of φ < 1.

Given knowledge of β(Pi) = {βj(φ,Dj)|pj ∈ Pi}, we now

determine the correctness of certificate (c, Pi). φ
k-correctness

can be achieved by creating certificates (c′, Pi) with new func-

tion c′ such that c′(Pi) = True if and only if for all possible

point locations Pi = {kj=1 pj ∈ βj(φ,Dj) | βj(φ,Dj) ∈
β(Pi)} we have c′(Pi) = True. This can be easily improved

to φ-correctness by determining βj(φ
1/k, Dj) instead. However,

this is a conservative lower bound on the correctness of the

certificate. In the example certificate aboveφ(Pi), we would be

guaranteeing that p1 is above p2 and that β1(φ,D1) does not

intersect β2(φ,D2). Instead, we could calculate directly the

probability that p1 is above p2 and set above′φ(Pi) = True
as long as that probability is at least φ. This guarantees that

above′φ(Pi) is φ-correct.

III. CONVEX HULL ALGORITHM

Recall that the convex hull is defined as the smallest

convex region containing a set of points. In order to determine

certificates that guarantee a solution to this problem, we turn to

the KDS definition of convex hull certificates [5] that we will

review in this section. The KDS solution for this problem makes

use of a divide and conquer algorithm to find the convex hull

via finding the upper and lower envelopes in the dual setting,

where a point (a, b) is represented by the line y = ax + b 1

[5], [15].

Given a set of n lines L = {l1, l2, . . . , ln} where li is of

the form y = aix+ bi, if we think of these lines as defining n
halfplanes, y ≥ aix+bi, each lying above one of the lines, then

the upper envelope of L is the boundary of the intersection of

these half planes (see Figure 3). The lower envelope is defined

symmetrically.

upper envelope

lower envelope

Fig. 3. Upper and lower envelopes

Classic computational geometry has a well-established

equivalency of the convex hull of points and the upper/lower

envelopes of a collection of lines under the point-line duality

transformation [5], [15], in that the clockwise order of the

points along the upper (lower) convex hull of a set of points P
is equal to the left-to-right order of the sequence of the lines

on the upper (lower) envelope of the dual P ∗ (see Figure 4).

D

A H

G E*

B*

upper envelope

lower envelope

upper hull

lower hull

E

C

B

F

G*D*

H*

A*

F*
C*

D*G*

Fig. 4. Equivalence of convex hulls and envelopes

1Note that standard notation dualizes (a, b) to y = ax−b, however, KDS [5]
uses ax+ b, which we follow to avoid confusion when discussing certificates.
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Fig. 5. Top-left: points in primal plane. Bottom-left: dual plane, where a point (a, b) is represented by the line y = ax+b. Right: the merge tree corresponding
to the upper envelope computation in dual space. Leaf nodes are single lines and are omitted in the figure. The certificates proving the top-most merge are as
follows: (i) a chain intersection certificate guaranteeing that EH <x AB and EH <y A and AB <y H , that is, EH is to the left of AB, EH is below line A,
AB is below line H (ii) a diverging certificate guaranteeing that B≤sG and AB <y G, that is, B’s slope is less than or equal to G’s slope and vertex AB
is below line G, (iii) and, another diverging certificate guaranteeing that E≤sD and EH <y D. The certificates are explained in more detail in the paper
introducing them [5].

The KDS algorithm computes the convex hull in the dual

because it allows easier management of certificates. Since our

analysis will rely on certificates, we will make use of this

algorithm as well. Please refer to Figure 5 as we describe it

briefly below.

We focus only on the upper envelope of dual lines: the lower

envelope computation is symmetric. To find the upper envelope

of a set of lines, the lines are partitioned into two subsets

of roughly equal size, their upper envelopes are computed

recursively, and then the two resulting upper envelopes—let

them be called red and black— are merged. The merge step

is performed by sweeping a vertical line through all of the

vertices of the red and black upper envelopes, from left to

right. As the line sweeps, the most recently encountered red

and black vertices are maintained along with the information

whether the red or the black chain is above. As the sweep

encounters the next red (black) vertex, the algorithm determines

if it is above or below the corresponding black (red) edge.

If it is above, the current vertex is added to the merged

envelope. If the above/below ordering of the envelopes has

changed, that means the red and black envelopes have crossed,

and the intersection point is also added to the merged upper

envelope. This algorithm takes time O(n log n) [15]. We use

the same algorithm and return the same points as the hull,

so our algorithm also takes time O(n log n). However, our

certificates are φ-correct, so we will need to more carefully

consider the correctness of the resulting hull (Section V). First,

we will describe these certificates in more detail.

As originally presented in [5], the comparisons done during

the merge step lead to the following certificates: (i) x-certificates
(<x) are used to certify the x-ordering of the red and black

vertices, (ii) y-certificates (<y) are used to certify the y-ordering

of a vertex with respect to an edge of the opposite color. (iii)

slope-certificates (≤s) involve comparisons between line slopes.

Slope-certificates are not required in the above sweep algorithm,

however they are needed in order to make the KDS local—

avoiding linearly many y-certificates per edge.

In a merge tree, we keep track of all levels of the divide

and conquer algorithm’s merge step and certify the properties

that determine each choice in the merge of two recursively

determined upper envelope chains. Recall from [5] and [4]

that the leaf nodes of the merge tree are single lines and

the root node contains all line segments determining the

resulting upper envelope. The certificates, as presented in

[5], come in dependent groups. That is, the invalidation of

any one certificate invalidates all other certificates in that

group, and the existence of any one certificate implies the

existence of all other certificates in the group. These certificates

are tangent certificates, chain intersection certificates, and

diverging certificates (see Figure 6). Diverging and tangent
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d
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c

Fig. 6. Convex hull certificates [5] in the dual setting showing the two chains involved in red and black. Left: Tangent certificates guarantee that line c is
below the vertex ab and that the slope of line c is greater than the slope of a and less than the slope of b. Center: Intersection certificates guarantee that the
vertex ab is to the left of vertex cd and below line c and that vertex cd is to the right of vertex ab and below line b. Right: Diverging certificates guarantee
that b’s slope is less than or equal to the slope of line a and that the vertex cb is below line a.

certificates represent the two ways in which an edge will not

be involved in the resulting upper envelope while intersection

certificates represent a merge point of the two chains. For

more precise details defining these certificates see [5]. One

assumption implicit in the presentation of these certificates and

in the statement of the original divide and conquer algorithm

is that the points are in general position, i.e., no two lines in

the dual setting are parallel. We make the same assumption.

See Figure 5 for an example involving eight points (shown

both in primal space and the dual space), and the merge tree

corresponding to the upper envelope computation.

Convex Hull Algorithm: Using these certificates, we

now have the following algorithm. Create the certificates

based on the expected values of the points. We will show

in Lemma IV.1 this gives a set of φ-correct certificates. Find

the convex hull using these certificates and the O(n log n)
divide and conquer algorithm [5]. Then find the boundary of

the convex hull of those points. Specifically, given points H
determined by the certification process as the hull, we report

CH({βi(φ,Di) | pi ∈ H}) where CH takes the convex hull

of the convex bounding regions of the points on the hull (e.g.,

using the algorithm of [9] which takes time O(n log n)). The

resulting algorithm takes time O(n log n).

IV. CERTIFICATE ERROR MODEL

In order to reason about the correctness of this convex hull

algorithm when expected values are used instead of precise

points, we introduce a new error model that evaluates the

correctness of a geometric structure based on the correctness

of its component certificates.

Definition IV.1 (φ-correct within the certificate error model).
Given a set of certificates C guaranteeing a geometric structure,
for all (c, Pi) ∈ C, (c, Pi) is φ-correct.

When we originally construct the set of certificates for a

problem we will do so based on the set of expected values

of the points, V (Pi) = {vj |pj ∈ Pi}. The question then

becomes what is the relationship between certificates involving

the expected values and those involving the set of points at

their full distribution of locations. Certificates that are 1-correct

based on the expected values are easily achieved by making

the direct comparisons based on the known expected values,

the question is how these relate to the certificates involving

the points. Recall that vi ∈ βi(φ,Di) for normal distributions.

Lemma IV.1. Given that

Pr[βj(φ,Dj) ∩ βk(φ,Dk) = ∅] ≥ φ for all pj , pk ∈ Pi

where Pi ⊂ P , then
(
Pr[c(V (Pi)) = True] = 1

)
=⇒ (

Pr[c(Pi) = True] ≥ φ
)

.

Proof: Consider the cases when c(Pi) = False: either

βj(φ,Dj)∩βk(φ,Dk) 
= ∅ or at least one of the true locations

p′j associated with pj ∈ Pi is outside of βj(φ,Dj). Both

of these cases occur with probability at most 1 − φ, so the

certificate probability guarantee of φ has been verified.

With this lemma, we have the following basic procedure for

translating any existing set of certificates into a φ-correct set:

1) Create a set of 1-correct certificates based on the expected

values of the points. These certificates are a set of φ-

correct certificates involving points, by Lemma IV.1.

2) Solve the problem using these certificates as usual.

3) Return a worst case result based on the boundaries of

the points in the solution.

Step 3 will be explained in more detail for each specific problem

solution.

Here, we begin with an example problem that demonstrates

the value and structure of the certificate error model without the

complexity of the convex hull certificates that will be described

in Section III.

A. 1D Maximum Problem

The 1D Maximum Problem determines the maximum point

among a set of n one-dimensional points. We will assume

that these points are in general position. We will use the

same certificates as those in the KDS solution to this problem,

which relies on a max heap that maintains the full ordering of

the points. The n − 1 certificates guarantee the parent-child

relationships in the heap [5].

Following the general procedure outlined above, parent-child

certificates are created based on their expected values. We

will say that aboveφ(p, q) certifies that Pr[p > q] ≥ φ. The

original certificates created are above1(vp, vq). By Lemma IV.1,

this gives us certificates aboveφ(p, q). Since vp ∈ βp(φ,Dp)
and vq ∈ βq(φ,Dq), we also have that aboveφ(p, q) =⇒(
aboveφ(p, vq) ∧ aboveφ(vp, q)

)
. We find the point m that

is the maximum based on these certificates and report the

value max = max{p ∈ βm(φ,Dm)} as the result of the 1D

maximum problem.

For example, consider the max heap shown in Figure

7 maintaining probabilistic points m, p, q, r and s. There

are four certificates: aboveφ(m, p), aboveφ(p, q), aboveφ(p, r)
and aboveφ(m, s) associated with this heap. Recall that

aboveφ(p, q) certifies that p > q with probability at least φ.

The expected values vp at which these points are believed to

be are shown within each node. In the case where the boundary

5252



1

r

m

sp

q

11

8

14

14

11

8

1

5

5

Fig. 7. Max-heap for the 1D Maximum problem.

extends 1 unit in each direction centered at vm, the maximum

returned is 15 = max{βm(φ,Dφ)}.
However, the true value of a point may differ from what

is believed, which may cause a certificate to be incorrect.

For example, if point q has a true value of 16, it makes the

certificate aboveφ(p, q) false. Moreover, as in this case, an

incorrect certificate may mean that q’s real value (16) is higher

than the maximum given by the heap. Our goal is to show

that this bad case does not happen too often. We will use the

assumption that the points’ boundary regions may not intersect

with high probability.

Specifically, we will show that φ-correctness under the

certificate error model for the 1D maximum problem implies

correctness under a previously studied error model, the robust

error model. Under the robust error model, more commonly

known as a robust statistical estimator, a structure is robust to

outliers up to some breakdown point [16]. Defining the error

model more specifically is problem-dependent.

Definition IV.2 (1D Maximum Problem: φ-correct within the

robust error model). For a point set P with n points, the
returned maximum point max is such that

|{p ∈ P | p ≤ max}| ≥ φ · n .

Since we are working with probabilistic points, we are

interested in an expected φ-correct robust error model.

Definition IV.3 (1D Maximum Problem: expected φ-correct

within the robust error model). For a point set P with n points,
the returned maximum point max is such that

E [ |{p ∈ P | p ≤ max}| ] ≥ φ · n .

If, for all points p ∈ P , Pr[p ≤ max] ≥ φ then by linearity

of expectations, expected φ-correctness is implied, with the

expectation taken over the point location distributions. We will

thus proceed with the expected version of the definition.

Theorem IV.4 (1D Maximum Problem: Certificate error model

implies robust error model). Given a max heap with certificate
set C, points P , and returned maximum point max, if for all
(c, Pi) ∈ C, (c, Pi) is φ-correct then max is expected φ-correct
within the robust error model.

Proof: Since the heap is φ-correct under the certificate

error model, we expect 100− Φ percent of the certificates to

be incorrect. There are n− 1 certificates in the heap. We will

examine how many points can be greater than the maximum

for each incorrect certificate. If a certificate aboveφ(p, q) is

incorrect then p 
∈ βp or q 
∈ βq . We will associate each point

outside of its boundary with the certificate it participates in

as a child. Recall from Definition II.4 that the location of

q′ being drastically different from vq does not invalidate the

child certificates of q - those were still made with respect

to q = (vq, Dq). Thus, each incorrect certificate (associated

with some point that is outside of its boundary) will cause

at most its child point to be above the maximum. The only

remaining point to consider is the maximum point, which

doesn’t participate in any certificate as a child. By the definition

of max = max{p ∈ βm(φ,Dm)}, the true value of m is

greater than max with probability at most 1− φ.

So n points will be above the maximum reported value

each with probability at most 1− φ. Thus, we expect that the

reported maximum point will be within the top 100−Φ percent

of the points and so the result is expected to be φ-correct under

the robust error model.

V. CONVEX HULL ERROR MODEL CORRECTNESS

We will consider correctness of the hull under the robust

error model which states that the convex hull is φ-correct if at

least Φ percent of the points are contained within the hull.

Definition V.1 (Convex Hull: expected φ-correct within the

robust error model). Given a set of n points P and its set of
points H on the convex hull, where H is the associated hull
region,

E [|{p ∈ P | p ∈ H}|] ≥ φ · n .

This is a restatement of an idea Tukey referred to as “peeling”

in which some number or percentage of outlying points are

iteratively deleted and the convex hull is computed on the

remaining points [12]. A conservative interpretation of this

definition states the goal as computing the minimum convex

area containing Φ percent of the points. Given the probabilistic

nature of our points, we will instead compute the minimum

convex area containing the entirety of the boundary (the

truncated distribution of point locations) for the points on

the hull based on their expected values. We will show that this

convex hull satisfies the weaker Definition V.1 above.

The certificate error model remains the same: a convex hull

is φ-correct if each certificate is φ-correct.

Theorem V.2 (Convex Hull: Certificate error model implies

robust error model). Given a set of certificates C certifying
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a convex hull solution for points P , with returned set of
probabilistic points H that make up the hull, where H is
the associated hull region,

∀(c,Pi)∈C , (c, Pi) is φ− correct −→

E [|{p ∈ P | p ∈ H}|] ≥ φ · n .

In order to reason about the certificate correctness of the

convex hull, we will first need to understand the properties of

these certificates in more detail. We will say that a point p has

been excluded from the convex hull by some certificate when

believing that certificate’s false assertion causes p to be outside

of the resulting convex hull. See Figure 8 for an example where

point D is excluded from the convex hull due to an incorrect

tangent certificate. Note that if a certificate incorrectly causes

p to be on the convex hull, p has not been excluded.

D’

primal plane

AB

dual plane

D

C

B:(−1,0) A:(1,0)

D:(0,−0.25)

D’

Fig. 8. Left: probabilistic points in primal plane. Right: Consider the merge of
the black envelope consisting of lines A and B, and the red envelope consisting
of D only. This merge is certified by a tangent certificate guaranteeing that
line D is below vertex AB (D <y AB), the slope of line D is greater than
the slope of B (B <s D), and less than the slope of A (D <s A). If point
D’s real position is D’, notice that the line corresponding to D’ in dual space
is above point AB, and this makes the tangent certificate incorrect. Point D is
excluded from the convex hull by this incorrect tangent certificate.

Recall the tree of certificates that show the choices in the

divide and conquer convex hull algorithm, which we called

the merge tree (an example was shown in Figure 5). Here, we

consider the levels of the merge tree in which a single point

(a line in the dual setting) participates.

Lemma V.1. Each point p ∈ P with associated dual line �
can only be excluded from the convex hull by an incorrect
certificate in the highest level L of the merge tree in which �
participates.

Proof: Suppose there is an incorrect certificate that

involves � in some level L′ below level L. Despite this

incorrect certificate, � advanced to level L′ + 1 ≤ L, so � was

found to be on the upper envelope for all lines in its subtree

at level L′. Points reported as on the convex hull (lines in the

upper envelope in the dual setting) have not been excluded

from the hull. So as long as � advances to some level above

L′, incorrect certificates in level L′ can not exclude �. So �
can only be excluded from the convex hull by an incorrect

certificate that keeps it from being reported on the convex hull.

This level is, by construction of the merge tree, the highest

level at which � participates in the merge tree.

Next, we examine the properties of certificates from a single

line’s point of view.

Lemma V.2. Each point p ∈ P with associated dual line �
can be excluded from the convex hull by at most one certificate
when considering a single level L of the merge tree.

Proof: First, we consider which lines have the potential to

be excluded from the hull for each type of certificate. Referring

to the line labels of Figure 6, note that only c may be excluded

by an incorrect tangent certificate, a or d may be excluded

due to an incorrect intersection certificate, and only b may be

excluded by an incorrect diverging certificate, since these are

the lines not believed to be on the hull. Note also that some

of the lines in these certificates (a and d in the intersection

certificates and c in the diverging certificates) only contribute a

vertex to the geometric relationship being guaranteed between

the lines. We will say that such lines participate as a vertex in

the certificate, while the other lines will be said to participate
as a line.

�

b
b′

�′

b′

Fig. 9. The solid lines show the expected positions of � and b while the dashed
lines show their possible true positions. � participates as a line in a tangent
certificate with the red upper envelope and as a vertex in a diverging certificate.
There is no way for � to be on the upper envelope without violating the tangent
certificate it participates in. In the top figure, the diverging certificate fails, but
� is not on the upper envelope, while in the bottom figure, both certificates
fail and � is on the resulting upper envelope.

Suppose that � takes the role of c in the tangent certificate

(see Figure 9): we will consider what other certificates � could

participate in. Since � already participates in one certificate

as a line, it can not participate in any others as a line. This is

because � can only have one type of slope relationship with the

chain that is above it - either tangent, intersecting, or diverging.

That leaves participation as a vertex. Depending on the number

of lines participating in the merge at this level, � may have

zero, one, or two endpoints contributing to its upper envelope

segment. At any existing endpoint, � could participate as a

vertex in a diverging certificate or an intersection certificate,

but may participate in at most one certificate per vertex. For

either a failing diverging or intersection certificate to exclude

�, the vertex of � that is participating in the certificate must

be above the line from the other (red) chain. But if one of

the endpoints of � is above the other chain, then the tangent
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certificate is incorrect. So for � to be excluded, the tangent

certificate it participates in must be incorrect.

A similar analysis when � takes the role of b in the

diverging certificate argues that for � to be excluded in that

case, the diverging certificate it participates in as b must be

incorrect. Finally, remember that if � participates as a line in

an intersection certificate it can not be excluded from the hull

as it is already found to be on the hull (for this level). We have

considered all possible cases when � participates as a line and

in each of them there is a single certificate that must be wrong

for � to be excluded from the hull and no other certificate may

exclude � from the hull on its own.

Now we can put these lemmas together for the proof of

Theorem V.2.

Proof: By Lemmas V.1 and V.2 we know that each point

can be excluded from the hull only by an incorrect certificate

in its highest level of the merge tree and that each point has

at most one certificate per level that can exclude it from the

hull, so each point has at most one certificate in the whole

merge tree that can exclude it. If a convex hull is φ-correct

under the certificate error model, then each certificate has

1−φ probability of being incorrect and thus each point not on

the hull has at most 1− φ probability of being excluded. By

linearity of expectation, the expected number of points outside

the reported hull is at most (1 − φ)n. So the convex hull is

expected to be φ-correct under the robust error model.

VI. CONCLUSION

In this paper, we introduced a new way of understanding

and quantifying approximate geometric correctness via our

certificate error model. Accompanying this, we showed how

this error model could be applied to probabilistic points of the

type generated by machine learning models in the context of

two problems - the 1D maximum and the convex hull problems.

We gave an O(n log n) time algorithm for the convex hull on

probabilistic points, with approximate correctness guaranteed

under the robust error model and under this certificate error

model. The strength of the certificate error model lies in its

generalizability to any problem that can be stated in terms of

its component Boolean properties. These results could also

be generalized to probabilistic points in a motion setting,

since certificates are also the basis for kinetic data structure

(KDS) results.
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