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Abstract

We introduce a probabilistic kinetic data structure
that uses a motion model to maintain a specific geo-
metric structure to within a user-specified confidence
value. We also introduce a certificate-based error
model and accompanying problem-specific proofs that
the robust error model is implied by this new, more ge-
ometrically generalizable, error model. We show that
the probabilistic kinetic data structure translation
from a classic kinetic data structure (KDS) is efficient
and approximately correct under the certificate-based
error model based on the user-given confidence value.
Significantly, this means that any existing KDS is
efficient under this probabilistic framework.

Introduction

Given objects in motion, such as people on cell phones,
cars, etc., we consider the question of how to calculate
and update information about the resulting geometric
structures, such as the convex hull, as they change
with the object motion over time. We focus on a the-
oretical framework for this question that incorporates
real-world elements of related topics from outside of
the computational geometry community by allowing
the point motion to be predicted probabilistically. We
build on a large body of work on kinetic data struc-
tures in such a way that existing solutions can be im-
mediately adapted for use in this probabilistic setting.

The motion framework that has gained the most
traction within the computational geometry commu-
nity is the kinetic data structures framework (KDS),
first introduced by Basch, Guibas, and Hershberger in
1997 [1]. KDS assumes that points follow flight plans
given as polynomial curves (over space and time)
of bounded degree. These polynomials are known
in advance. Certificates, representing fragments of
knowledge about the geometric structure under
calculation, guarantee that points participate in
a certain geometric relationship with each other.
Events are scheduled at times when certificates are
known to fail based on the given individual point

trajectories. The geometric maintenance is then
accomplished by moving time forward and handling
events via correcting the failing certificates so that
the geometric structure is correctly maintained at
all times. The maintenance of many geometric
structures under motion has been considered within
this framework, including the convex hull, minimum
spanning tree, kd-trees and other hierarchical data
structures, clustering problems, medians, spanners,
and the Delaunay triangulation [3].

While the KDS framework has been extremely
successful, it still presents many issues in modeling
real-world motion. Foremost among these are the
issues that points are assumed to follow flight plans
that are exact and known in advance, both of which
obviously limit the use of this framework in real-world
experimental settings. Additionally, one issue with
requiring the point motion to be known in advance
is that this prevents the KDS framework from being
used in an online manner, despite its inherent rela-
tionship to online algorithms seen in its incremental
structural updates over time. Previous effort has at-
tempted to address these issues by considering work
analyzed per time step under assumptions such as the
maximum displacement of a point over a single time
step [2]. Here, we are interested in creating a frame-
work that assumes limited knowledge of point motion
in advance and importantly allows the geometric
structure to be updated only when we predict that an
update is required. The tradeoff is that the structure
will be maintained approximately instead of exactly.

Framework and Results

We introduce probabilistic kinetic data structures
(PKDS), a modification of kinetic data structures
(KDS) that operates under probabilistic knowledge
of point motion. We broaden the assumptions about
the trajectories that points follow to include motion
as understood by a probabilistic model of the type
widely used within the machine learning community
to predict object locations over time [4]. Specifically,
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Figure 1: Left: A single pie slice showing the predicted direction (implying a linear trajectory) with highest
confidence ` beginning from the current position p and continuing for as long as the model is confident
until time ∆. Right: The improving predicted pie slices from a model as a point with a linear trajectory
moves from left to right.

we assume that when given situation-dependent obser-
vations about the surroundings, such a model can pre-
dict future object motion according to a Gaussian dis-
tribution over the direction of the object and that this
predicted direction decays according to another Gaus-
sian distribution over the time from the last query to
the model. When considering only predictions that
are confident up to some probability, we can visualize
this output from the model as a pie slice where the
direction of highest confidence is the lengthwise center
line of the pie slice `, the current predicted position is
the point p, and the curved far edge ∆ represents the
limits of our confidence in the model as it decays with
time (see Figure 1). We assume that queries to this
model take logarithmic time, i.e., they are fast enough
that they can be made frequently, but not so fast that
it would make sense to continuously query for their
predicted position. We also assume that the model
takes history into account, so that it becomes more
confident as the motion is more predictable over time.

In conjunction with our point prediction model, we
allow the user of the system to input a desired con-
fidence value, φ, indicating the probability that the
resulting geometric structure will be correct at any
time. The correctness of the structure is determined
according to a robust error model, more commonly
known as a robust statistical estimator, which allows
a structure to be robust to outliers up to some break-
down point [5]. Under a certificate-based error model
that we introduce here, a structure is considered
some percentage, φ, correct if φ percent of the total
certificates used to calculate the structure are correct.
We show that a solution that is φ-correct within the
certificate-based error model is also φ-correct within
the robust error model for the problems of main-
taining the 1D maximum as well as the convex hull.
Importantly, while the robust error model must be
defined based on the characteristics of each problem’s
geometric structure, the certificate-based error model
is directly understood from the certificates.

Within the PKDS model, we modify the KDS idea

of events and certificates to include both structural
events and time events. Structural events are the
same as the original KDS events in the sense that they
represent changes in the geometric structure under
maintenance and imply that a repair of a certificate
may be required. Structural events are scheduled
by considering the pie slices as if all contained point
locations are possible. The certificate failure that
is at the minimum time over all possible certificate
failures when all such points are considered is the
structural event that is scheduled. We show that
scheduling structural events in this way ensures that
the geometric structure is updated enough so that it
is expected to be correct up to the given confidence
value under a certificate-based error model.

In addition, our framework includes time events,
which are indications that our certainty about the
point’s location has become too low and another query
to the model is required. We demonstrate that the
cost incurred by adding these time events and by mak-
ing the structural events dependent on the outline of
the pie slice and not a single trajectory is not too much
in the sense that solutions to the original KDS frame-
work can be shown to work under the PKDS frame-
work with only small modifications and efficiency cost.
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